Câu hỏi:

13/07/2024 956

Giả sử năm đầu tiên, cô Hạnh gửi vào ngân hàng A (đồng) với lãi suất r%/năm. Hết năm đầu tiên, cô Hạnh không rút tiền ra và gửi thêm A (đồng) nữa. Hết năm thứ hai, cô Hạnh cũng không rút tiền ra và lại gửi thêm A (đồng) nữa. Cứ tiếp tục như vậy cho những năm sau. Chứng minh số tiền cả vốn lẫn lãi mà cô Hạnh có được sau n (năm) là Tn=A(100+r)r1+r100n1 (đồng), nếu trong khoảng thời gian này lãi suất không thay đổi.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét mệnh đề P(x): "Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau n (năm) là Tn=A(100+r)r1+r100n1 (đồng) (n*)".

+) Khi n = 1:

Số tiền lãi người đó nhận được là: A . r% = A.r100 (đồng).

Số tiền nhận được (bao gồm cả vốn lẫn lãi) là:

A+A.r100=A100+r100==A100+rr.r100

=A(100+r)r1+r1001

=A(100+r)r1+r10011

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau (k +1) (năm) là Tk+1=A(100+r)r1+r100k+11 (đng)

Vì cô Hạnh không rút tiền ra và lại gửi thêm A (đồng) nữa nên:

– Số tiền vốn của cô Hạnh sau (k + 1) năm là: Tk + A (đồng).

– Số tiền lãi cô Hạnh nhận được sau (k + 1) (năm) là:

(Tk + A) . r% (đồng).

Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau (k + 1) (năm) là:

(Tk + A) + (Tk + A) . r%

= (Tk + A) + (Tk + A) . r100

=  (Tk + A) 1+r100

= A(100+r)r1+r100k1+A.1+r100

= A(100+r)r1+r100k11+r100+A1+r100 

= A(100+r)r1+r100k+11+r100+A.100+r100

= A(100+r)r1+r100k+11+r100+A.100+rr.r100

= A(100+r)r1+r100k+11+r100+r100

= A(100+r)r1+r100k+11

= Tk + 1 (đồng).

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n*. Từ đó ta có điều phải chứng minh.

 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n  *.

Xem đáp án » 13/07/2024 7,433

Câu 2:

Chứng minh 16n15n1 chia hết cho 225 với mọi n*.

Xem đáp án » 13/07/2024 5,207

Câu 3:

Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n  *.

a) So sánh S1 và T1; S2 và T2; S3 và T3.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 4,809

Câu 4:

Cho Sn=1+12+122++12n Tn=212n, với n  *.

a) So sánh S1 và T1; S2 và T2; S3 và T3.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 3,545

Câu 5:

Chứng minh nn > (n + 1)n – 1 với n  *, n ≥ 2.

Xem đáp án » 13/07/2024 2,939

Câu 6:

Cho Sn=11.5+15.9+19.13++1(4n3)(4n+1), với n  *.

a) Tính S1, S2, S3, S4.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 2,386

Câu 7:

Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 = 1qn1q, với n  *.

Xem đáp án » 13/07/2024 2,339

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn