Câu hỏi:

13/07/2024 2,897

Một người gửi số tiền A (đồng) vào ngân hàng. Biểu lãi suất của ngân hàng như sau: Chia mỗi năm thành m kì hạn và lãi suất r%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thi cứ sau mỗi kì hạn, số tiển lãi sẽ được nhập vào vốn ban đầu. Chứng minh số tiền nhận được (bao gồm cả vốn lẫn lãi) sau n (năm) gửi là Sn=A1+r100mm.n (đồng), nếu trong khoảng thời gian này người gửi không rút tiền ra và lãi suất không thay đổi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét mệnh đề P(x): "Số tiền nhận được (bao gồm cả vốn lẫn lãi) sau x (kì hạn) gửi là Sn=A1+r100mx  (đồng) (x*)".

Vì một năm có m kì hạn nên lãi suất mỗi kì hạn là r%m=r100m.

+) Khi x = 1:

Số tiền lãi người đó nhận được là: A . r100m (đồng).

Số tiền nhận được (bao gồm cả vốn lẫn lãi) là:

A + A . r100m = A1+r100m=A1+r100m1 (đồng)

Vậy mệnh đề đúng với x = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Số tiền nhận được (bao gồm cả vốn lẫn lãi) sau (k + 1) (kì hạn) gửi là Sn=A1+r100mk+1 (đồng).

Thật vậy, theo giả thiết quy nạp ta có:

Số tiền nhận được (bao gồm cả vốn lẫn lãi) sau k (kì hạn) gửi là Sn=A1+r100mk (đồng).

sau mỗi kì hạn, số tiển lãi sẽ được nhập vào vốn ban đầu nên số tiền lại ở kì hạn thứ (k + 1) là: A1+r100mk.  r100m (đồng).

Suy ra số tiền nhận được (bao gồm cả vốn lẫn lãi) là:

A1+r100mk+A1+r100mk.  r100m

=A1+r100mk1+r100m=A1+r100mk+1(đồng).

Vậy mệnh đề cũng đúng với x = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi x*.

Sau n (năm) thì số kì hạn người đó đã gửi là: m . n (kì hạn).

Do đó, số tiền nhận được (bao gồm cả vốn lẫn lãi) sau n (năm) gửi là:

Sn=A1+r100mm  .  n (đồng).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n  *.

Xem đáp án » 13/07/2024 14,340

Câu 2:

Chứng minh 16n15n1 chia hết cho 225 với mọi n*.

Xem đáp án » 13/07/2024 6,828

Câu 3:

Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n  *.

a) So sánh S1 và T1; S2 và T2; S3 và T3.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 6,072

Câu 4:

Cho Sn=1+12+122++12n Tn=212n, với n  *.

a) So sánh S1 và T1; S2 và T2; S3 và T3.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 4,883

Câu 5:

Cho Sn=11.5+15.9+19.13++1(4n3)(4n+1), với n  *.

a) Tính S1, S2, S3, S4.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 4,208

Câu 6:

Chứng minh nn > (n + 1)n – 1 với n  *, n ≥ 2.

Xem đáp án » 13/07/2024 4,032

Câu 7:

Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 = 1qn1q, với n  *.

Xem đáp án » 13/07/2024 3,517
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay