Câu hỏi:

13/06/2022 3,178

Chứng minh công thức nhị thức Newton bằng phương pháp quy nạp:

(a+b)n=Cn0an+Cn1an1b+...+Cnn1abn1+Cnnbn với n*.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Với n = 1, ta có: (a + b)1 = a + b =

Vậy công thức đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh công thức cũng đúng với k + 1, tức là:

(a+b)k+1=Ck+10ak+1+Ck+11a(k+1)1b+...+Ck+1(k+1)1ab(k+1)1+Ck+1k+1bk+1.

Thật vậy, theo giả thiết quy nạp ta có:

(a+b)k=Ck0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk.

Khi đó:

(a+b)k+1=a+ba+bk

=aa+bk+ba+bk

=aCk0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk

+bCk0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk

=Ck0ak+1+Ck1akb+Ck2ak1b2+...+Ckk1a2bk1+Ckkabk

+Ck0akb+Ck1ak1b2+...+Ckk2a2bk1+Ckk1abk+Ckkbk+1

=Ck0ak+1+Ck0+Ck1akb+Ck1+Ck2ak1b2+...

+Ckk2+Ckk1a2bk1+Ckk1+Ckkabk+Ckkbk+1

=1.ak+1+Ck+11akb+Ck+12ak1b2+...+Ck+1k1a2bk1+Ck+1kabk+1.bk+1

(vì Cki+Cki+1=Ck+1i+1  0ik, i, k*)

=Ck+10ak+1+Ck+11a(k+1)1b+...+Ck+1(k+1)1ab(k+1)1+Ck+1k+1bk+1.

Vậy công thức cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, công thức đã cho đúng với mọi n*.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khai triển các biểu thức sau:

a) (2x + y)6;

b) (x – 3y)6;

c) (x – 1)n;

d) (x + 2)n;

e) (x + y)2n;

g) (x – y)2n;

trong đó n lả số nguyên dương.

Xem đáp án » 13/07/2024 4,207

Câu 2:

Cho n* . Chứng minh Cn0+Cn1+Cn2++Cnn1+Cnn=2n.

Xem đáp án » 13/07/2024 2,163

Câu 3:

Khai triển biểu thức (x + 2)7.

Xem đáp án » 13/07/2024 1,979

Câu 4:

Cho tập hợp A = {x1; x2; x3; ... ; xn} có n phần tử. Tính số tập hợp con của A.

Xem đáp án » 13/06/2022 1,979

Câu 5:

Bằng phương pháp quy nạp, chứng minh:

a) n5 – n chia hết cho 5 n*;

b) n7n chia hết cho 7   *.

Xem đáp án » 13/06/2022 1,702

Câu 6:

Xác định hệ số của:

a) x12 trong khai triển của (x + 4)30;

b) x10 trong khai triển của (3 + 2x)30;

c) x15 và x16 trong khai triển của 2x31751.

Xem đáp án » 13/07/2024 1,654

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store