Câu hỏi:

13/06/2022 4,678

Chứng minh công thức nhị thức Newton bằng phương pháp quy nạp:

(a+b)n=Cn0an+Cn1an1b+...+Cnn1abn1+Cnnbn với n*.

Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Với n = 1, ta có: (a + b)1 = a + b =

Vậy công thức đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh công thức cũng đúng với k + 1, tức là:

(a+b)k+1=Ck+10ak+1+Ck+11a(k+1)1b+...+Ck+1(k+1)1ab(k+1)1+Ck+1k+1bk+1.

Thật vậy, theo giả thiết quy nạp ta có:

(a+b)k=Ck0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk.

Khi đó:

(a+b)k+1=a+ba+bk

=aa+bk+ba+bk

=aCk0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk

+bCk0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk

=Ck0ak+1+Ck1akb+Ck2ak1b2+...+Ckk1a2bk1+Ckkabk

+Ck0akb+Ck1ak1b2+...+Ckk2a2bk1+Ckk1abk+Ckkbk+1

=Ck0ak+1+Ck0+Ck1akb+Ck1+Ck2ak1b2+...

+Ckk2+Ckk1a2bk1+Ckk1+Ckkabk+Ckkbk+1

=1.ak+1+Ck+11akb+Ck+12ak1b2+...+Ck+1k1a2bk1+Ck+1kabk+1.bk+1

(vì Cki+Cki+1=Ck+1i+1  0ik, i, k*)

=Ck+10ak+1+Ck+11a(k+1)1b+...+Ck+1(k+1)1ab(k+1)1+Ck+1k+1bk+1.

Vậy công thức cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, công thức đã cho đúng với mọi n*.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khai triển các biểu thức sau:

a) (2x + y)6;

b) (x – 3y)6;

c) (x – 1)n;

d) (x + 2)n;

e) (x + y)2n;

g) (x – y)2n;

trong đó n lả số nguyên dương.

Xem đáp án » 13/07/2024 5,611

Câu 2:

Cho tập hợp A = {x1; x2; x3; ... ; xn} có n phần tử. Tính số tập hợp con của A.

Xem đáp án » 13/06/2022 3,846

Câu 3:

Cho n* . Chứng minh Cn0+Cn1+Cn2++Cnn1+Cnn=2n.

Xem đáp án » 13/07/2024 3,430

Câu 4:

Xác định hệ số của:

a) x12 trong khai triển của (x + 4)30;

b) x10 trong khai triển của (3 + 2x)30;

c) x15 và x16 trong khai triển của 2x31751.

Xem đáp án » 13/07/2024 2,554

Câu 5:

Khai triển biểu thức (x + 2)7.

Xem đáp án » 13/07/2024 2,457

Câu 6:

Tính:

a) S=C2022092022+C2022192021+...+C2022k92022k+...+C202220219+C20222022.

b) T=C2022042022C2022142021.3+...C202220214.32021+C2022202232022.

Xem đáp án » 13/07/2024 2,204
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua