Câu hỏi:

11/07/2024 1,316

Sử dụng máy tính cầm tay, tìm nghiệm của các hệ phương trình sau:

a) {2x+yz=1x+3y+2z=23x+3y3z=5; 

b) {2x3y+2z=5x+2y3z=43xyz=2; 

c) {xyz=12xy+z=14x+3y+z=3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Sau khi mở máy, ấn phím MENU để màn hình hiện lên bảng lựa chọn.

 

Ấn liên tiếp các phím 9, 1, 3.

 

Tiếp theo, lần lượt nhập các hệ số của từng phương trình bằng cách ấn liên tiếp các phím như sau:

Nhập hệ số của phương trình thứ nhất:

2

=

1

=

1

=

1

=

Nhập hệ số của phương trình thứ hai:

1

=

3

=

2

=

2

=

Nhập hệ số của phương trình thứ ba:

3

=

3

=

3

=

5

=

Tiếp theo, ấn liên tục 3 lần phím = để xem kết quả.

Ta được x = 2/3, y = -2/3, z = 5/3

Vậy nghiệm của hệ phương trình là (23;23;53).

b) Sau khi mở máy, ấn phím MENU để màn hình hiện lên bảng lựa chọn.

 

Ấn liên tiếp các phím 9, 1, 3.

 

Tiếp theo, lần lượt nhập các hệ số của từng phương trình bằng cách ấn liên tiếp các phím như sau:

Nhập hệ số của phương trình thứ nhất:

2

=

3

=

2

=

5

=

Nhập hệ số của phương trình thứ hai:

1

=

2

=

3

=

4

=

Nhập hệ số của phương trình thứ ba:

3

=

1

=

1

=

2

=

Tiếp theo, ấn liên tục 3 lần phím = để xem kết quả.

Ta thấy màn hình hiện ra No Solution.

Vậy phương trình đã cho vô nghiệm.

c) Sau khi mở máy, ấn phím MENU để màn hình hiện lên bảng lựa chọn.

 

Ấn liên tiếp các phím 9, 1, 3.

 

Tiếp theo, lần lượt nhập các hệ số của từng phương trình bằng cách ấn liên tiếp các phím như sau:

Nhập hệ số của phương trình thứ nhất:

1

=

1

=

1

=

1

=

Nhập hệ số của phương trình thứ hai:

2

=

1

=

1

=

1

=

Nhập hệ số của phương trình thứ ba:

4

=

3

=

1

=

3

=

Tiếp theo, ấn liên tục 3 lần phím = để xem kết quả.

Ta thấy màn hình hiện ra Infinite Solution.

Vậy phương trình đã cho có vô số nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) {x2y=1x+2yz=2x3y+z=3{x2y=14y+z=3x3y+z=3{x2y=14y+z=3yz=2{x2y=14y+z=33z=5

{x2y=14y+53=3z=53{x2(13)=1y=13z=53{x=13y=13z=53.

Vậy hệ phương trình đã cho có nghiệm duy nhất là (13;13;53).

b) {3xy+2z=2x+2yz=12x3y+3z=2{3xy+2z=27y+5z=12x3y+3z=2{3xy+2z=27y+5z=17y5z=2{3xy+2z=27y+5z=10y+0z=3.

Phương trình thứ ba của hệ này vô nghiệm, do đó hệ phương trình đã cho vô nghiệm.

c) {xy+z=0x4y+2z=14xy+3z=1{xy+z=03yz=14xy+3z=1{xy+z=03yz=13y+z=1{xy+z=03yz=1.

Từ phương trình thứ hai, ta có z = 3y – 1, thay vào phương trình thứ nhất ta được x = –2y + 1.

Vậy hệ phương trình đã cho có vô số nghiệm dạng (–2y + 1; y; 3y – 1).

Lời giải

Hướng dẫn giải

a) {2x+3y=4x3y=22x+yz=3{2x+3y=43x=62x+yz=3{2.2+3y=4x=22x+yz=3{y=0x=22x+yz=3

{y=0x=22.2+0z=3{y=0x=2z=1.

 

Vậy hệ phương trình có nghiệm duy nhất là (2; 0; 1).

b) {x+y+z=2x+3y+2z=83xy+z=4{x+y+z=22yz=63xy+z=4{x+y+z=22yz=64y+2z=2{x+y+z=22yz=62y+z=1{x+y+z=22yz=60y+0z=5.

Phương trình thứ ba của hệ này vô nghiệm, do đó hệ phương trình đã cho vô nghiệm.

c) {xy+5z=22x+y+4z=2x+2yz=4{xy+5z=23y+6z=6x+2yz=4{xy+5z=23y+6z=63y+6z=6{xy+5z=23y+6z=6{xy+5z=2y+2z=2.

Từ phương trình thứ hai, ta có y = 2z + 2, thay vào phương trình thứ nhất ta được x = –3z.

Vậy hệ phương trình đã cho có vô số nghiệm dạng (–3z; 2z + 2; z).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay