Câu hỏi:

09/01/2020 22,987

Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng abcd¯ , trong đó 1abcd9

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Chọn số tự nhiên có 4 chữ số bất kỳ có: (cách).

Gọi A là biến cố: “Số được chọn có dạng abcd¯, trong đó 1abcd9” . (*)

Cách 1: Dùng tổ hợp

Nhận xét rằng với 2 số tự nhiên bất kỳ ta có: 

Do đó nếu đặt:

Từ giả thuyết  ta suy ra: 

Với mỗi tập con gồm 4 phần tử đôi một khác nhau được lấy ra từ {1,2,....,12}ta đều có được duy nhất một bộ số thoả mãn (**) và do đó tương ứng ta có duy nhất một bộ số (a,b,c,d) thoả mãn (*). Số cách chọn tập con thoả tính chất trên là tổ hợp chập 4 của 12 phần tử, do đó: 

Vậy 

Cách 2: Dùng tổ hợp lặp

Chọn số tự nhiên có 4 chữ số bất kỳ có: (cách).

Mỗi tập con có 4 phần tử được lấy từ tập {1,2,...,9}(trong đó mỗi phần tử có thể được chọn lặp lại nhiều lần) ta xác định được một thứ tự không giảm duy nhất và theo thứ tự đó ta có được một số tự nhiên có dạng  abcd¯(trong đó ). Số tập con thoả tính chất trên là số tổ hợp lặp chập 4 của 9 phần tử

Do đó theo công thức tổ hợp lặp ta có:

 Vậy 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Lấy 3 phần tử từ tập S có 

Suy ra số phần tử của không gian mẫu là 

Gọi A là biến cố thỏa mãn yêu cầu bài toán.

Đặt  có 10 phần tử.

 có 10 phần tử.

a, b, c là ba số theo thứ tự lập thành cấp số cộng => 2a = b + c

Có 2a là số chẵn, nên b và c cùng chẵn hoặc cùng lẻ.

Suy ra số cách chọn b, c là 

Mỗi cách chọn cặp b, c thì có duy nhất một cách chọn a sao cho 2a = b + c

Suy ra số phần tử của biến cố là 

Xác suất thỏa yêu cầu bài là 

Lời giải

Chọn A.

Số phần tử của không gian mẫu là n(W =) 6!.

Gọi  A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ  hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

Theo quy tắc nhân ta có  cách

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP