Câu hỏi:

10/01/2020 22,555

Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên ra từ A hai số. Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

+  Số các chỉnh hợp chập  của tập hợp các chữ số

Số các chỉnh hợp chập  của tập hợp các chữ số {0;1;2;3;4;5;6;7;8;9} mà chữ số 0 đứng vị trí đầu tiên (0bc¯) bằng số các chỉnh hợp chập  của tập hợp các chữ số {0;1;2;3;4;5;6;7;8;9} và bằng A92 .

Suy ra số các số tự nhiên có  chữ số đôi một khác nhau bằng 

+ Lấy ngẫu nhiên ra từ  hai số  cách.

+ Gọi  là biến cố “lấy được từ  hai số mà các chữ số có mặt ở hai số đó giống nhau

Trường hợp 1: Ba chữ số có mặt trong hai số được lấy không có chữ số 0

  Chọn ba chữ số trong tập {0;1;2;3;4;5;6;7;8;9} C93  cách.

  Ba chữ số này tạo thành 3! = 6 số trong A.

  Lấy hai số trong 6 số này có C62 cách (hai số các chữ số có mặt ở hai số đó giống nhau).

  Suy ra có C93.C62 cách lấy hai số thỏa trường hợp 1.

Trường hợp 2: Ba chữ số có mặt trong hai số được lấy có chữ số .

  Chọn thêm hai chữ số trong tập {0;1;2;3;4;5;6;7;8;9}C92  cách.

  Ba chữ số này (hai chữ số vừa chọn và chữ số 0) tạo thành 2.2! = 4 số trong A.

  Lấy hai số trong 4 số này có C42 (hai số các chữ số có mặt ở hai số đó giống nhau).

  Suy ra có C92.C42 cách lấy hai số thỏa trường hợp 2.

Suy ra 

+ Do đó, xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau là:

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Lấy 3 phần tử từ tập S có 

Suy ra số phần tử của không gian mẫu là 

Gọi A là biến cố thỏa mãn yêu cầu bài toán.

Đặt  có 10 phần tử.

 có 10 phần tử.

a, b, c là ba số theo thứ tự lập thành cấp số cộng => 2a = b + c

Có 2a là số chẵn, nên b và c cùng chẵn hoặc cùng lẻ.

Suy ra số cách chọn b, c là 

Mỗi cách chọn cặp b, c thì có duy nhất một cách chọn a sao cho 2a = b + c

Suy ra số phần tử của biến cố là 

Xác suất thỏa yêu cầu bài là 

Lời giải

Chọn A.

Số phần tử của không gian mẫu là n(W =) 6!.

Gọi  A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ  hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

Theo quy tắc nhân ta có  cách

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP