Câu hỏi:

15/06/2022 347

Tìm số các giá trị nguyên của tham số m để phương trình sau có nghiệm trên [0;1] 4x+1+41x=(m+1)(22+x22x)+168m

 

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương trình tương đương với: 4(4x+4x)=4(m+1)(2x2x)+168m

Đặt t=2x2x .

Ta có: t'=2x+2x>0 .

Do đó x[0;1]   thì t[0;32] .

Ta có: t2=4x+4x2.2x.2x4x+4x=t2+2 .

Phương trình trở thành: 4(t2+2)=4t(m+1)+168m

m(t2)=(t2)(t+1)m=t+1 (vì t[0;32])

Để phương trình đã cho có nghiệm trên [0;1]  thì phương trình  phải có nghiệm t[0;32] .

Suy ra  m[1;52].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x)  liên tục trên R và có đồ thị như hình vẽ. Số nghiệm thực của phương trình f(2+f(ex))=1  là:

. Cho hàm số  y=f(x) liên tục trên R  và có đồ thị như hình vẽ. Số nghiệm thực của phương trình f(2+f(e^x))=1  là: (ảnh 1)

Xem đáp án » 15/06/2022 6,013

Câu 2:

Cho hàm số y=f(x)=ax4+bx3+cx2+dx+e . Biết rằng hàm số y=f'(x)   liên tục trên  và có đồ thị như hình bên. Hỏi hàm số y=f(2xx2)   có bao nhiêu điểm cực đại?
Cho hàm số  y=f(x)=ax^4+bx^3+cx^2+dx+e. Biết rằng hàm số y=f'(x)  liên tục trên  R và có đồ thị như hình bên. Hỏi hàm số y=f(2x-x^2)  có bao nhiêu điểm cực đại? (ảnh 1)

Xem đáp án » 15/06/2022 3,679

Câu 3:

Trong không gian Oxyz, cho hai điểm A(0;1;1), B(1;0;0) và mặt phẳng (P): x+y+z-3=0 . Gọi (Q) là mặt phẳng song song với (P) đồng thời đường thẳng AB cắt (Q) tại C sao cho CA=2CB. Mặt phẳng (Q) có phương trình là:

Xem đáp án » 10/06/2022 2,234

Câu 4:

Đường cong trong hình là đồ thị của hàm số nào dưới đây?
Đường cong trong hình là đồ thị của hàm số nào dưới đây? (ảnh 1)

Xem đáp án » 10/06/2022 2,117

Câu 5:

Cho hàm số y=f(x) có đồ thị như hình vẽ. Hàm số đồng biến trên khoảng nào dưới đây?
Cho hàm số y=f(x)  có đồ thị như hình vẽ. Hàm số đồng biến trên khoảng nào dưới đây? (ảnh 1)

Xem đáp án » 09/06/2022 2,041

Câu 6:

Cho hàm số y=f(x) và hàm số bậc ba y=g(x) có đồ thị như hình vẽ bên. Diện tích phần gạch chéo được tính bởi công thức nào sau đây?
Cho hàm số  y=f(x) và hàm số bậc ba y=g(x)  có đồ thị như hình vẽ bên. Diện tích phần gạch chéo được tính bởi công thức nào sau đây? (ảnh 1)

Xem đáp án » 10/06/2022 2,014

Câu 7:

Cho hàm số y=f(x)  liên tục trên R và có bảng xét dấu như hình sau:
Cho hàm số y=f(x)liên tục trên R và có bảng xét dấu như hình sau: (ảnh 1)

Hàm số đã cho có bao nhiêu điểm cực trị?

Xem đáp án » 09/06/2022 1,250

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn