Câu hỏi:

15/06/2022 433

Cho hình lăng trụ ABC.A'B'C'  M, N là hai điểm lần lượt bên cạnh CA, CB sao cho MN song song với ABCMCA=k . Mặt phẳng (MNB'A')   chia khối lăng trụ ABC.A'B'C'   thành hai phần có thể tích V1  (phần chứa điểm C) và  sao cho V1V2=2  . Khi đó giá trị của k là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cho hình lăng trụ  ABC. A'B'C' và M, N là hai điểm lần lượt bên cạnh CA, CB sao cho MN song song với AB và CM/CA=k  . Mặt phẳng (MNB'A')  chia khối lăng trụ ABC. A'B'C'  thành hai phần có thể tích V1  (phần chứa điểm C) (ảnh 1)

Ta có:  {(MNB'A')(ACC'A')=A'M(MNB'A')(BCC'B')=B'N(ACC'A')(BCC'B')=CC'A'M,B'N,CC'đồng quy tại S

Áp dụng định lí Ta-lét ta có: SMSA'=MNA'B'=MNAB=CMCA=k=SNSB'=SCSC'

 

VS.MNCVS.A'B'C'=SMSA'.SNSB'.SCSC'=k3V1VS.A'B'C'=1k3V1=(1k3)VS.A'B'C'

Ta có: SCSC'=kSC'CC'SC'=kCC'SC'=1k

VS.A'B'C'VABC.A'B'C'=13SC'CC'=13(1k)VS.A'B'C'=VABC.A'B'C'3(1k)

V1=(1k3)VS.A'B'C'=(1k3)VABC.A'B'C'3(1k)=1+k+k23VABC.A'B'C'

 

 

Ta có:  V1V2=2V2=23VABC.A'B'C'1+k+k23=231+k+k2=2k=512.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

. Cho hàm số  y=f(x) liên tục trên R  và có đồ thị như hình vẽ. Số nghiệm thực của phương trình f(2+f(e^x))=1  là: (ảnh 2)

Số nghiệm của phương trình f(2+f(ex))=1  là số giao điểm của đồ thị hàm số y=f(2+f(ex))  và đường thẳng .

Dựa vào đồ thị hàm số ta có:

f(2+f(ex))=1[2+f(ex)=12+f(ex)=x0(2;3) 

 

[f(ex)=3f(ex)=x02(0;1)

Tương tự ta có: f(ex)=3[ex=1ex=x1<1 (vo nghiem)x=0  .

 f(ex)=x02(0;1)Phương trình có 3 nghiệm phân biệt khác 0

[ex=a<0 (vo nghiem)ex=b<0 (vo nghiem)ex=c>0x=lnc0S

Vậy phương trình ban đầu có 2 nghiệm phân biệt.

Câu 2

Cho hàm số y=f(x) và hàm số bậc ba y=g(x) có đồ thị như hình vẽ bên. Diện tích phần gạch chéo được tính bởi công thức nào sau đây?
Cho hàm số  y=f(x) và hàm số bậc ba y=g(x)  có đồ thị như hình vẽ bên. Diện tích phần gạch chéo được tính bởi công thức nào sau đây? (ảnh 1)

Lời giải

Đáp án C

Ta có: S=32|f(x)g(x)|dx=31|f(x)g(x)|dx+12|f(x)g(x)|dx

=31[g(x)f(x)]dx+12[f(x)g(x)]dx.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay