Câu hỏi:

18/06/2022 324 Lưu

Cho hàm số fx=ax4+bx2+c với a>0,  c>2017,   a+b+c<2017. Số cực trị của hàm số y=fx2017 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

+) Xét hàm số hx=fx2017=ax4+bx2+c2017 

+) Tìm số điểm cực trị của hàm số h(x) bằng cách giải phương trình h'(x) 

+) Xác định dấu của h0;  h1;  h1 và vẽ đồ thị hàm số y = h(x), từ đó vẽ đồ thị hàm số y=hx và kết luận.

Cách giải:

Cho hàm số f(x) = ax^4 + bx^2 + c với a > 0, c > 2017, a + b + c < 2017 (ảnh 1)

Xét hàm số hx=fx2017=ax4+bx2+c2017,

với a>0,c>2017,   a+b+c<2017 nên b < 0
Ta có: h'x=4ax3+2bx=2x2ax2+b=0x=0x2=b2a

Do a>0,b<0b2a>0 nên h'(x) = 0 có 3 nghiệm phân biệt y=hx có 3 cực trị

Ta có: h0=c2017>0,   h1=h1=a+b+c2017<0 

 h0.h1<0,   h0.h1<0

x1,x2:x11;0,   x20;1 hx1=hx2=0 

Do đó, đồ thị hàm số y = h(x) y=hx dạng như hình vẽ bên.

Vậy, số cực trị của hàm số y=fx2017 là 7

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Đồ thị hàm số bậc nhất trên bậc nhất y=ax+bcx+d,  a,c0,  adbc0 có tiệm cận đứng là dc, tiệm cận ngang là y=ac 

Cách giải:

Đường tiệm cận ngang của đồ thị hàm số y=2x3x+2 là y = 2 

Câu 2

Lời giải

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và các điểm không xác định của y’ trên đoạn 12;e 

- Tính các giá trị tại 12,e và các điểm vừa tìm được

- Kết luận GTLN, GTNN của hàm số từ các giá trị trên.

Cách giải:

TXĐ: D=0;+ 

y=xlnxy=11x;   y'=0x=1 

Ta có: y12=12+ln2;   y1=1;   ye=e1 

=> Giá trị nhỏ nhất, giá trị lớn nhất của hàm số lần lượt là: 1 và e-1 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP