Câu hỏi:

18/06/2022 179 Lưu

Cho hàm số liên tục trên khoảng a;b x0a;b. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?

(1) Hàm số đạt cực trị tại điểm x0 khi và chỉ khi f'x0=0.

(2) Nếu hàm số y=fx có đạo hàm và có đạo hàm cấp hai tại điểm x0 thỏa mãn điều kiện f'x0=f''x0=0 thì điểm x0 không phải là điểm cực trị của hàm số y=fx.

(3) Nếu f'x đổi dấu khi x qua điểm x0 thì điểm x0 là điểm cực tiểu của hàm số y=fx

(4) Nếu hàm số y=fx có đạo hàm và có đạo hàm cấp hai tại điểm x0 thỏa mãn điều kiện f'x0=0,   f''x0>0 thì điểm x0 là điểm cực tiểu của hàm số y=fx

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y=x3 y'=3x2=0x=0. Tuy nhiên x=0 không là điểm cực trị của hàm số.

(2) sai, khi f''x0=0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Đồ thị hàm số bậc nhất trên bậc nhất y=ax+bcx+d,  a,c0,  adbc0 có tiệm cận đứng là dc, tiệm cận ngang là y=ac 

Cách giải:

Đường tiệm cận ngang của đồ thị hàm số y=2x3x+2 là y = 2 

Lời giải

Đáp án B
Phương pháp:

Xác định góc giữa hai mặt phẳng α;β 

- Tìm giao tuyến Δ của α;β

- Xác định 1 mặt phẳng γΔ 

- Tìm các giao tuyến a=αγ,   b=βγ 

- Góc giữa hai mặt phẳng α;β:   α;β=a;b

Cách giải:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S (ảnh 1)

Gọi I, J lần lượt là trung điểm của AB, CD.

Tam giác SAB cân tại S SIAB 

Vì mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD) nên SIABCD 

Ta có: IJCD,  SICDCDSIJ
SCDABCD=CDSIJCDSIJSCD=SJSIJABCD=IJSCD;ABCD=SJ;IJ=SJI^  do  SJI^<900cosSJI^=21919IJSJ=21919S=a21919=a192SI=SJ2IJ2=a1922a2=a152
Thể tích của khối chóp S.ABCDV=13.SI.SABCD=13.a152.a2=a3156

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP