Cho hàm số liên tục trên khoảng và . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm khi và chỉ khi .
(2) Nếu hàm số có đạo hàm và có đạo hàm cấp hai tại điểm thỏa mãn điều kiện thì điểm không phải là điểm cực trị của hàm số .
(3) Nếu đổi dấu khi x qua điểm thì điểm là điểm cực tiểu của hàm số
(4) Nếu hàm số có đạo hàm và có đạo hàm cấp hai tại điểm thỏa mãn điều kiện thì điểm là điểm cực tiểu của hàm số
Cho hàm số liên tục trên khoảng và . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm khi và chỉ khi .
(2) Nếu hàm số có đạo hàm và có đạo hàm cấp hai tại điểm thỏa mãn điều kiện thì điểm không phải là điểm cực trị của hàm số .
(3) Nếu đổi dấu khi x qua điểm thì điểm là điểm cực tiểu của hàm số
(4) Nếu hàm số có đạo hàm và có đạo hàm cấp hai tại điểm thỏa mãn điều kiện thì điểm là điểm cực tiểu của hàm sốCâu hỏi trong đề: Đề kiểm tra Học kì 1 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số có . Tuy nhiên không là điểm cực trị của hàm số.
(2) sai, khi , ta không có kết luận về điểm có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúngHot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Đồ thị hàm số bậc nhất trên bậc nhất có tiệm cận đứng là , tiệm cận ngang là
Cách giải:
Đường tiệm cận ngang của đồ thị hàm số là y = 2
Lời giải
Xác định góc giữa hai mặt phẳng
- Tìm giao tuyến của
- Xác định 1 mặt phẳng
- Tìm các giao tuyến
- Góc giữa hai mặt phẳng
Cách giải:

Gọi I, J lần lượt là trung điểm của AB, CD.
Tam giác SAB cân tại S
Vì mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD) nên
Ta có:Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.