Câu hỏi:

18/06/2022 341 Lưu

Cho hình chóp S.ABCD có đáy là hình vuông, hình chiếu của S lên (ABCD) là điểm H thuộc cạnh AB thỏa mãn HB = 2HA, góc giữa SC (ABCD) bằng 600. Biết rằng khoảng cách từ A đến (SCD) bằng 26. Thể tích V của khối chóp S.ABCD

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+) dA;SCD=dH;SCD xác định khoảng cách từ H đến (SCD).

+) Xác định góc giữa SC và mặt đáy.

+) Đặt cạnh của hình vuông ở đáy là x, tính SH và HI theo x.

+) Sử dụng hệ thức lượng trong tam giác vuông để tìm x.

+) Tính VS.ABCD=13SH.SABCD

Cách giải:

Cho hình chóp S.ABCD có đáy là hình vuông, hình chiếu của S lên (ABCD) (ảnh 1)

Do AH//SCD nên dA;SCD=dH;SCD 

Kẻ HI//AD,  ICD,   HKSI,  KSI 

dH;SAC=HK=26 

Giả sử độ dài cạnh hình vuông ở đáy là x. Khi đó, HI=x 

ΔHBC vuông tại B HC=HB2+BC2=23x2+x2=13x3 

SHABCDSC;ABCD=SCH^=600 

ΔSHC vuông tại H SH=HC.tan600=13x3.3=39x3 

ΔSHI vuông tại H,

 HKSI1HK2=1SH2+1IH2126=113x23+1x2=1613x2x2=32x=42SH=39.423=4783 

Thể tích khối chóp S.ABCD: V=13.SH.SABCD=13.4783.422=128789

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Đồ thị hàm số bậc nhất trên bậc nhất y=ax+bcx+d,  a,c0,  adbc0 có tiệm cận đứng là dc, tiệm cận ngang là y=ac 

Cách giải:

Đường tiệm cận ngang của đồ thị hàm số y=2x3x+2 là y = 2 

Câu 2

Lời giải

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và các điểm không xác định của y’ trên đoạn 12;e 

- Tính các giá trị tại 12,e và các điểm vừa tìm được

- Kết luận GTLN, GTNN của hàm số từ các giá trị trên.

Cách giải:

TXĐ: D=0;+ 

y=xlnxy=11x;   y'=0x=1 

Ta có: y12=12+ln2;   y1=1;   ye=e1 

=> Giá trị nhỏ nhất, giá trị lớn nhất của hàm số lần lượt là: 1 và e-1 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP