Câu hỏi:

11/01/2020 7,948

Có 4 quyển sách Toán, 6 quyển sách Lý và 8 quyển sách Hóa khác nhau được xếp lên giá sách theo một hàng ngang. Tính xác suất để không có bất kỳ hai quyển sách Hóa đứng cạnh nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Gọi Ω là không gian mẫu. Ta có: n(Ω) = 18!.

Gọi A là biến cố: “Xếp 18 quyển sách lên giá sách theo một hàng ngang sao cho không có bất kỳ hai quyển sách Hóa đứng cạnh nhau”.

Xếp ngẫu nhiên 10 quyển sách gồm 4 quyển sách Toán và 6 quyển sách Lý vào 10 vị trí có 10! cách.

Xếp 8 quyển sách Hóa vào 9 khoảng trống giữa 10 quyển sách Toán và Lý, vị trí đầu và cuối giá sách có A118 cách.

=> n(A) = 10!.A118

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Để xếp 9  em học sinh thành một hàng dọc ta thực hiện ba hành động liên tiếp

* Sắp xếp 3  học sinh lớp B. Có 3! cách.

* Sắp xếp 2 học sinh lớp A đứng cạnh các học sinh lớp B sao cho giữa hai học sinh lớp A không có học sinh lớp B. Có A41.2! cách.

* Lần lượt sắp xếp 4 học sinh lớp C còn lại đứng cạnh các học sinh trên. Có A94 cách.

Vậy có tất cả 3!A41.2!.A94

Bình luận: Trong đề thi thử THPT chuyên Thái Nguyên lần 2 trong câu hỏi này không có đáp án 145152 mà thay bởi đáp án 145112. Tôi thiết nghĩ lỗi do người làm đề đã đánh máy nên đã tự ý đổi lại một đáp án khác mà tôi nghĩ  chính xác hơn.

Lời giải

Chọn C

Số cách xếp 9 quyển sách lên một kệ sách dài là 9! . Suy ra số phần tử không gian mẫu: n(Ω) = 9!

Gọi A là biến cố: “các quyển sách cùng một môn nằm cạnh nhau”.

Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 2 nhóm lên kệ sách chúng ta có: 2! cách xếp

Với mỗi cách xếp 2 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán và 4! cách hoán vị các cuốn sách Văn. Suy ra n(A) = 5!.4!.2!

Xác suất cần tìm là 

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP