Câu hỏi:

11/01/2020 6,769

Người ta sắp xếp ngẫu nhiên 5 viên bi được đánh số từ 1 đến 5 vào năm chiếc hộp theo một hàng ngang. Tính xác suất để các viên bi được đánh số chẵn luôn đứng cạnh nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Gọi Ω là không gian mẫu. Ta có: n(Ω) = 5!.

Gọi A là biến cố: “Xếp 5 viên bi được đánh số từ 1 đến 5 vào năm chiếc hộp sao cho các viên bi được đánh số chẵn nằm trong các hộp đứng cạnh nhau ”.

Xếp 2 viên bi có đánh số chẵn (viên bi số 2 và viên bi số 4) vào 2 hộp đứng cạnh nhau  có 2! cách.

Ta coi việc xếp 2 viên bi chẵn vào hai chiếc hộp đứng cạnh nhau là xếp chúng vào một chiếc hộp lớn.

Xếp 3 viên bi có đánh số lẻ (viên bi số 1, viên bi số 3 và viên bi số 5) vào 3 chiếc hộp và 2 viên bi đánh số chẵn (viên bi số 2 và viên bi số 4) vào 1 chiếc hộp lớn nên ta có 4 chiếc hộp để sắp xếp, vậy có 4! cách.

Vậy n(A) = 2!.4! 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Để xếp 9  em học sinh thành một hàng dọc ta thực hiện ba hành động liên tiếp

* Sắp xếp 3  học sinh lớp B. Có 3! cách.

* Sắp xếp 2 học sinh lớp A đứng cạnh các học sinh lớp B sao cho giữa hai học sinh lớp A không có học sinh lớp B. Có A41.2! cách.

* Lần lượt sắp xếp 4 học sinh lớp C còn lại đứng cạnh các học sinh trên. Có A94 cách.

Vậy có tất cả 3!A41.2!.A94

Bình luận: Trong đề thi thử THPT chuyên Thái Nguyên lần 2 trong câu hỏi này không có đáp án 145152 mà thay bởi đáp án 145112. Tôi thiết nghĩ lỗi do người làm đề đã đánh máy nên đã tự ý đổi lại một đáp án khác mà tôi nghĩ  chính xác hơn.

Lời giải

Chọn C

Số cách xếp 9 quyển sách lên một kệ sách dài là 9! . Suy ra số phần tử không gian mẫu: n(Ω) = 9!

Gọi A là biến cố: “các quyển sách cùng một môn nằm cạnh nhau”.

Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 2 nhóm lên kệ sách chúng ta có: 2! cách xếp

Với mỗi cách xếp 2 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán và 4! cách hoán vị các cuốn sách Văn. Suy ra n(A) = 5!.4!.2!

Xác suất cần tìm là 

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP