Câu hỏi:
11/07/2024 3,679Thực hiện phép chia:
a) (-x6 + 5x4 - 2x3) : 0,5x2.
b) (9x2 - 4) : (3x + 2).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) (-x6 + 5x4 - 2x3) : 0,5x2
= -x6 : 0,5x2 + 5x4 : 0,5x2 + (-2x3) : 0,5x2
= (-1 : 0,5) . (x6 : x2) + (5 : 0,5) . (x4 : x2) + (-2 : 0,5) . (x3 : x2).
= (-1 : )x4 + (5 :)x2 + (-2 :)x
= (-1 . 2)x4 + (5 . 2)x2 + (-2 . 2)x
= -2x4 + 10x2 - 4x
b) Thực hiện theo các bước sau:
Bước 1. Lấy hạng tử có bậc cao nhất của đa thức 9x2 - 4 chia cho hạng tử có bậc cao nhất của đa thức 3x + 2:
9x2 : 3x = 3x.
Bước 2. Lấy đa thức 9x2 - 4 trừ đi (3x + 2).3x ta được dư thứ nhất là -6x - 4.
Bước 3. Lấy hạng tử có bậc cao nhất của dư thứ nhất chia cho hạng tử có bậc cao nhất của đa thức 3x + 2:
-6x : 3x = -2.
Bước 4. Lấy dư thứ nhất trừ đi -2(3x + 2) ta được dư thứ hai là 0 nên quá trình chia kết thúc.
Vậy (9x2 - 4) : (3x + 2) = 3x - 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Thực hiện các phép chia đa thức sau bằng cách đặt tính chia:
a) (6x3 - 2x2 - 9x + 3) : (3x - 1);
b) (4x4 + 14x3 - 21x - 9) : (2x2 - 3).
Câu 2:
Thực hiện các phép chia đa thức sau:
a) (-5x3 + 15x2 + 18x) : (-5x);
b) (-2x5 - 4x3 + 3x2) : 2x2.
Câu 3:
Trong mỗi trường hợp sau đây, tìm thương Q(x) và dư R(x) trong phép chia F(x) cho G(x) rồi biểu diễn F(x) dưới dạng: F(x) = G(x) . Q(x) + R(x).
a) F(x) = 6x4 - 3x3 + 15x2 + 2x - 1; G(x) = 3x2.
b) F(x) = 12x4 + 10x3 - x - 3; G(x) = 3x2 + x + 1.
Câu 4:
Thực hiện các phép chia sau:
a) 3x7 : 1/2x4; b) (-2x) : x; c) 0,25x5 : (-5x2).
Câu 5:
Tìm dư R và thương Q trong phép chia đa thức A = 3x4 - 6x - 5 cho đa thức
B = x2 + 3x - 1 rồi viết A dưới dạng A = B.Q + R.
Câu 6:
Thực hiện phép chia 0,5x5 + 3,2x3 - 2x2 cho 0,25xn trong mỗi trường hợp sau:
a) n = 2;
b) n = 3.
về câu hỏi!