Câu hỏi:

13/07/2024 10,955

Xét đa thức P(x) = x2(x2 + x + 1) - 3x(x - a) + 14 (với a là một số).

a) Thu gọn đa thức P(x) rồi sắp xếp đa thức đó theo số mũ giảm dần của biến.

b) Tìm a sao cho tổng các hệ số của đa thức P(x) bằng 52.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) P(x) = x2(x2 + x + 1) - 3x(x - a) + 14

= x2 . x2 + x2 . x + x2 . 1 - 3x . x - 3x . (-a) + 14

= x4 + x3 + x2 - 3x2 + 3ax + 14

= x4 + x3 - 2x2 + 3ax + 14

Vậy đa thức P(x) được thu gọn và sắp xếp theo số mũ giảm dần của biến là:

P(x) = x4 + x3 - 2x2 + 3ax + 14.

b) Do tổng các hệ số của đa thức P(x) bằng 52 nên 1 + 1 + (-2) + 3a + 14 = 52.

Suy ra 3a =5214=10414=94.

Do đó a = 94:3=94.13=34.

Vậy để tổng các hệ số của đa thức P(x) bằng 52 thì a=34.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) P(x) = (-2x2 - 3x + x - 1)(3x2 - x - 2).

= (-2x2 - 2x - 1)(3x2 - x - 2).

= -2x2 . 3x2 - (-2x2) . x - (-2x2) . 2 - 2x . 3x2 - 2x . (-x) - 2x . (-2) - 1 . 3x2 - 1 . (-x) - 1 . (-2)

= -6x4 + 2x3 + 4x2 - 6x3 + 2x2 + 4x - 3x2 + x + 2

= -6x4 + (2x3 - 6x3) + (4x2 + 2x2 - 3x2) + (4x + x) + 2

= -6x4 - 4x3 + 3x2 + 5x + 2

Khi đó đa thức P(x) có bậc bằng 4, hệ số cao nhất bằng -6, hệ số tự do bằng 2.

b) Q(x) = (x5 - 5)(-2x6 - x3 + 3)

= x5 . (-2x6) - x5 . x3 + x5 . 3 - 5 . (-2x6) - 5 . (-x3) - 5 . 3

= -2x11 - x8 + 3x5 + 10x6 + 5x3 - 15

= -2x11 - x8 + 10x6 + 3x5 + 5x3 - 15

Khi đó đa thức Q(x) có bậc bằng 11, hệ số cao nhất bằng -2, hệ số tự do bằng -15.

Lời giải

a) 12x2 . 65x3 = 12 . 65 . x2 . x3 = 35x5.

b) y257y32y2+0,25 = y2 . 57y3 - y2 . 2y2 + y2 . 0,25

= 57y5 - 2y4 + 0,25y2.

c) (2x2 + x + 4)(x2 - x - 1)

= 2x2 . x2 - 2x2 . x - 2x2 . 1 + x . x2 - x . x - x . 1 + 4 . x2 - 4 . x - 4 . 1

= 2x4 - 2x3 - 2x2 + x3 - x2 - x + 4x2 - 4x - 4

= 2x4 + (-2x3 + x3) + (-2x2 - x2+ 4x2) + (-x - 4x) - 4

= 2x4 - x3 + x2 - 5x - 4.

d) (3x - 4)(2x + 1) - (x - 2)(6x + 3)

= 3x . 2x + 3x . 1 - 4 . 2x - 4 . 1 - (x . 6x + x . 3 - 2 . 6x - 2 . 3)

= 6x2 + 3x - 8x - 4 - (6x2 + 3x - 12x - 6)

= 6x2 - 5x - 4 - (6x2 - 9x - 6)

= 6x2 - 5x - 4 - 6x2 + 9x + 6

= (6x2 - 6x2) + (-5x + 9x) + (-4 + 6)

= 4x + 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay