Câu hỏi:

07/07/2022 829

Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là C

Ta có:

\(\overrightarrow {AB} = \left( {9; - 3} \right) \Rightarrow AB = \sqrt {{9^2} + {{\left( { - 3} \right)}^2}} = 3\sqrt {10} .\)

\(\overrightarrow {AC} \left( {9;6} \right) \Rightarrow AC = \sqrt {{9^2} + {6^2}} = 3\sqrt {13} .\)

\(\overrightarrow {BC} \left( {0;9} \right) \Rightarrow BC = \sqrt {{0^2} + {9^2}} = 9.\)

Ta lại có:

\(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cos\widehat {BAC}\)

\( \Leftrightarrow 9.9 + \left( { - 3} \right).6 = 3\sqrt {10} .3\sqrt {13} .cos\widehat {BAC}\)

\( \Leftrightarrow 63 = 9\sqrt {130} .cos\widehat {BAC}\)

\( \Leftrightarrow cos\widehat {BAC} = \frac{7}{{\sqrt {130} }} \Leftrightarrow \widehat {BAC} \approx 52,13^\circ .\)

Áp dụng định lí Sin trong tam giác ta được:

\(\frac{{BC}}{{\sin \widehat {BAC}}} = 2R \Leftrightarrow \frac{9}{{\sin 52,13^\circ }} = 2R \Leftrightarrow R \approx 5,7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Khi nào thì \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}?\)

Lời giải

Đáp án đúng là B

Ta có: \(\overrightarrow u .\overrightarrow v = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right)\)

\( \Leftrightarrow {\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\left[ {\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right)} \right]^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}.c{\rm{o}}{{\rm{s}}^2}\left( {\overrightarrow u ,\overrightarrow v } \right)\)

Để \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}\) thì \(c{\rm{o}}{{\rm{s}}^2}\left( {\overrightarrow u ,\overrightarrow v } \right) = 1 \Leftrightarrow \left[ \begin{array}{l}c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right) = 1\\c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right) = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left( {\overrightarrow u ,\overrightarrow v } \right) = {0^0}\\\left( {\overrightarrow u ,\overrightarrow v } \right) = {180^0}\end{array} \right.\)

Vậy khi góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 00 hoặc 1800 thì \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}.\)

Câu 2

Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?

Lời giải

Đáp án đúng là D

Ta có: \(\overrightarrow a .\overrightarrow b = 1.\left( { - 1} \right) + \left( { - 1} \right).1 = - 1 + \left( { - 1} \right) = - 2 \ne 0.\) Suy ra hai vecto \(\overrightarrow a ,\overrightarrow b \) không vuông góc với nhau. Do đó A sai.

Ta có: \(\overrightarrow n .\overrightarrow k = 1.2 + 1.0 = 2 + 0 = 2 \ne 0.\) Suy ra hai vecto \(\overrightarrow n ,\overrightarrow k \) không vuông góc. Do đó B sai.

Ta có: \(\overrightarrow u .\overrightarrow v = 2.4 + 3.6 = 8 + 18 = 26 \ne 0.\) Suy ra hai vecto \(\overrightarrow u ,\overrightarrow v \) không vuông góc. Do đó C sai.

Ta có: \(\overrightarrow z .\overrightarrow t = a.\left( { - b} \right) + b.a = - ab + ab = 0.\) Suy ra hai vecto \(\overrightarrow z ,\overrightarrow t \) vuông góc với nhau. Do đó D đúng.

Câu 3

Khi nào thì hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) vuông góc?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho đoạn thẳng AB và điểm I là trung điểm của đoạn thẳng AB. Với điểm M bất kì, khẳng định nào dưới đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác ABC có trọng tâm G. Với điểm M bất kì, đẳng thức nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay