Câu hỏi:
07/07/2022 171Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {k - \frac{1}{3};5} \right)\), B(-2; 12) và
C\(\left( {\frac{2}{3};k - 2} \right)\). Giá trị dương của k thuộc khoảng nào dưới đây thì ba điểm A, B, C thẳng hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là D
Ta có: \(\overrightarrow {AC} = \left( {\frac{2}{3} - \left( {k - \frac{1}{3}} \right);k - 2 - 5} \right) = \left( {1 - k;k - 7} \right)\),
\(\overrightarrow {BC} = \left( {\frac{2}{3} - \left( { - 2} \right);k - 2 - 12} \right) = \left( {\frac{8}{3};k - 14} \right)\)
Để ba điểm A, B, C thẳng hàng khi \(\overrightarrow {AC} \) và \(\overrightarrow {BC} \) cùng phương
\( \Leftrightarrow \frac{{1 - k}}{{\frac{8}{3}}} = \frac{{k - 7}}{{k - 14}}\)
⇔ (1 – k)(k – 14) = \(\frac{8}{3}\)(k – 7)
⇔ - k2 + 15k – 14 = \(\frac{8}{3}\)k – \(\frac{{56}}{3}\)
⇔ - 3k2 + 45k – 42 = 8k – 56
⇔ 3k2 – 37k – 14 = 0
⇔ k1 ≈ 12,7 hoặc k2 ≈ -0,37.
Ta thấy k1 là giá trị dương nằm trong khoảng (12; 14).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho B(1; 2) và C(3; -1). Độ dài \(\overrightarrow {BC} \) là:
Câu 3:
Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
Câu 4:
Trong các vectơ sau đây, có bao nhiêu cặp vectơ cùng phương?
\(\overrightarrow x \)(-1; 3); \(\overrightarrow y \left( {2; - \frac{1}{3}} \right)\) ; \(\overrightarrow z \left( { - \frac{2}{5};\frac{1}{5}} \right)\); \(\overrightarrow {\rm{w}} \)(4; -2).
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho các vecto \(\overrightarrow b \left( {4; - 1} \right)\) và các điểm M(-3x; -1), N(0; -2 + y). Tìm điều kiện của x và y để \(\overrightarrow {MN} = \overrightarrow b \).
Câu 6:
Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.
Câu 7:
Sự chuyển động của một tàu thủy được thể hiện trên một mặt phẳng tọa độ như sau: Tàu khởi hành từ vị trí A(-3; 2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vecto \(\overrightarrow v = \left( {2;5} \right).\) Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 2 giờ.
về câu hỏi!