Câu hỏi:
18/07/2022 2,249
Trong không gian Oxyz, mặt phẳng qua hai điểm A(1; 1; 2); B(2; 1; −1) và vuông góc với mặt phẳng (α) : 2x – 2y + z – 1 = 0 có phương trình là:
Câu hỏi trong đề: Đề kiểm tra Giữa học kì 2 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi là có tọa độ (1; 0; −3).
Gọi là vectơ pháp tuyến của (α) là: = (2; −2; 1).
Vectơ pháp tuyến của mặt phẳng là = (−6; −7; −2) = (6; 7; 2).
Phương trình mặt phẳng đi qua A(1; 1; 2) có vectơ pháp tuyến là (6; 7; 2) là:
6(x −1) + 7(y – 1) + 2(z – 2) = 0
Û 6x + 7y + 2z – 6 – 7 – 4 = 0
Û 6x + 7y + 2z − 17 = 0.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt u = 2x + 1 Û du = 2dx Þ dx = du
x |
1 |
0 |
u |
3 |
1 |
Lời giải
Đáp án đúng là: B
Phương trình hoành độ giao điểm của hai đồ thị là
x = x2 + a Û 2x2 – 3x + 4a = 0 (*)
Ta có: (d) cắt (P) tại 2 điểm phân biệt có hoành độ dương nên phương trình có 2 nghiệm dương phân biệt nên:
Û
Û 0 < a < .
Gọi F(x) là một nguyên hàm của hàm số f(x) = x2 − x + a.
Khi đó:
S1 =
= = F(x1).
S2 =
= = −F(x2) + F(x1).
Ta có: S1 = S2 Û F(x2) = 0
Û + ax2 = 0
Û − 9x2 + 24a = 0
Do x2 là nghiệm của phương trình (*) nên ta có hệ phương trình:
Đối chiếu điều kiện của a nên ta có
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.