Câu hỏi:

18/07/2022 5,118

Cho hàm số f(x) liên tục trên đoạn [0; 1] và 0π2f(sinx)dx  = 5. Tính I=0πxf(sinx)dx

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Với I1 = 0π2f(sinx)dx .

Đặt x = π2− t Û dx = −dt

Đổi cận :

Cho hàm số f(x) liên tục trên đoạn [0; 1] và tích phân từ 0 đến pi/2 f(sinx)dx = 5. Tính (ảnh 1)

Do đó: I1 = π20fsinπ2tdt  = 0π2fcostdt .

Từ đó suy ra được: f(sinx) = f(cosx)

0πx.f(sinx)dx 0π2x.f(sinx)dx+π2πx.f(sinx)dx

Đổi biến u = π2  − x

Nên I2 = 0π2π2u.f(cosu)du  = 0π2π2x.f(sinx)dx .

Do đó: 2I2 = 0π2π2.f(sinx)dx Þ I2 = π4.0π2f(sinx)dx .

Với 0π2f(sinx)dx=5

Đặt t = π – x.

Suy ra I1 = π2πf(sin(πt))dt  = π2πf(sint)dt .

Đổi biến: v = 3π2− t

Suy ra I1 = π2πfsin3π2vdv  π2πf(cosv)dv

Trên π2;π  thì sinx = −cosx, ta có:

I3 = π2πx.f(sinx)dx .

Đổi biến : u = 3π2− x, ta được:

I3 = π2π3π2u.fsin3π2udu

π2π3π2u.f(cosu)du

Từ đó, ta có: 2I3 = π2π3π2.f(sinx)dx

Þ I3 = π2π3π4.f(sinx)dx

Þ I = I2 + I3 = π.ππ2f(x)dx = 5π.

Vậy I = 0πxf(sinx)dx  = 5π.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho 13f(x)dx  = 2, giá trị của 01f(2x+1)dx  bằng

Xem đáp án » 18/07/2022 22,798

Câu 2:

Biết (x+3).e2xdx=1me2x(2x+n)+C, với m, n Î ℚ. Khi đó tổng S = m2 + n2 có giá trị bằng

Xem đáp án » 18/07/2022 12,194

Câu 3:

Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3; −1; 1) trên trục Oz có tọa độ là

Xem đáp án » 18/07/2022 9,541

Câu 4:

Cho 2x+1x2dx  = ax + blnx2 với a, b Î, giá trị của S = a + b là

Xem đáp án » 18/07/2022 8,036

Câu 5:

Tìm họ nguyên hàm F(x) = x2dx

Xem đáp án » 18/07/2022 7,622

Câu 6:

Nguyên hàm của hàm số f(x) = 2x là:

Xem đáp án » 18/07/2022 5,773

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store