Câu hỏi:

18/07/2022 319

Cho hàm số y = f(x) liên tục trên [0; +∞) và 03fx+1dx  = 8. Tính tích phân I = 12xf(x)dx

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có 03fx+1dx=8

Đặt u = x+1  Û u2 = x + 1 Û 2udu = dx.

Đổi cận
Cho hàm số y = f(x) liên tục trên [0; +∞) và tích phân từ 0 đến 8 f(căn bậc hai x+1)dx = 8.  (ảnh 1)

Do đó ta được:  12f(u)2udu=8

Û 212f(u)udu=8  Þ  12uf(u)du=4

Do đó 12xf(x)dx=4 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Đặt u = 2x + 1 Û du = 2dx Þ dx = 12du

Đổi cận:

x

1

0

u

3

1

 
 
 
Ta có:
13f(u)12du=1213f(u)du=1213f(x)dx=12.2=1

Lời giải

Đáp án đúng là: B

Phương trình hoành độ giao điểm của hai đồ thị là

34x = 12x2 + a Û 2x2 – 3x + 4a = 0 (*)

Ta có: (d) cắt (P) tại 2 điểm phân biệt có hoành độ dương nên phương trình có 2 nghiệm dương phân biệt nên:

Δ>0S>0P>0 Û 9a32a>02a>0

Û 0 < a < 932 .

Gọi F(x) là một nguyên hàm của hàm số f(x) = 12 x234 x + a.

Khi đó:

S1 = 0x112x234x+adx

= 16x338x2+ax0x1  = F(x1).

S2 = x1x212x2+34xadx

= F(x)x1x2  = −F(x2) + F(x1).

Ta có: S1 = S2 Û F(x2) = 0

Û 16x23-38x22 + ax2 = 0

Û 4x22 − 9x2 + 24a = 0

Do x2 là nghiệm của phương trình (*) nên ta có hệ phương trình:

2x223x2+4a=04x229x2+24a=02x223x2+4a=016a3x2=02.2569a216a+4a=0x2=16a35129a212a=0a=0a=27128

Đối chiếu điều kiện của a nên ta có a=27128316;712

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP