Câu hỏi:

18/07/2022 7,509

Cho hàm số y = f (x) thỏa mãn f (x) < 0, x > 0 và có đạo hàm f '(x) liên tục trên khoảng (0; +∞) thỏa mãn f '(x) = (2x +1)f2(x), x >0 và f(1) = 12. Giá trị của biểu thức f(1) + f(2) + ... + f(2022) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có: f '(x) = (2x + 1).f 2(x) nên f'(x)f2(x)=2x+1

Û 1f(x)'=2x+1

Û 1f(x)=(2x+1)dx

Û 1f(x) = x2 + x + C

Cho x = 1, ta có:

1f(1)=12+1+C

Û 1f(1)  = 2 + C

Û 2 = 2 + C Û C = 0.

Do đó: 1f(x)  = x2 + x

Û f(x) = 1x2+x

Û f(x) = 1x(x+1)=1x+11x .

Từ đó ta có:

f(1) = 11+111= 121 ;

f(2) = 1312 .

Tương tự như vậy:

f(2022) = 1202312022

Vậy f(1) + f(2) + ... + f(2022) = 1202311= 20222023 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Đặt u = 2x + 1 Û du = 2dx Þ dx = 12du

Đổi cận:

x

1

0

u

3

1

 
 
 
Ta có:
13f(u)12du=1213f(u)du=1213f(x)dx=12.2=1

Lời giải

Đáp án đúng là: B

Phương trình hoành độ giao điểm của hai đồ thị là

34x = 12x2 + a Û 2x2 – 3x + 4a = 0 (*)

Ta có: (d) cắt (P) tại 2 điểm phân biệt có hoành độ dương nên phương trình có 2 nghiệm dương phân biệt nên:

Δ>0S>0P>0 Û 9a32a>02a>0

Û 0 < a < 932 .

Gọi F(x) là một nguyên hàm của hàm số f(x) = 12 x234 x + a.

Khi đó:

S1 = 0x112x234x+adx

= 16x338x2+ax0x1  = F(x1).

S2 = x1x212x2+34xadx

= F(x)x1x2  = −F(x2) + F(x1).

Ta có: S1 = S2 Û F(x2) = 0

Û 16x23-38x22 + ax2 = 0

Û 4x22 − 9x2 + 24a = 0

Do x2 là nghiệm của phương trình (*) nên ta có hệ phương trình:

2x223x2+4a=04x229x2+24a=02x223x2+4a=016a3x2=02.2569a216a+4a=0x2=16a35129a212a=0a=0a=27128

Đối chiếu điều kiện của a nên ta có a=27128316;712

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP