Câu hỏi:

30/07/2022 2,153 Lưu

Cho tam giác ABC có AH là đường trung trực của BC và H nằm trên đoạn thẳng BC. Tính số đo góc ABC^  biết số đo góc HAC^=40o .

Cho tam giác ABC có AH là đường trung trực của BC và H nằm trên đoạn thẳng BC. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta có: AH là đường trung trực của BC (H Î BC).

Suy ra H là trung điểm của BC.

Do đó HB = HC.

Xét ∆AHB và ∆AHC cùng vuông tại H có:

HB = HC (cmt);

AH là cạnh chung.

Suy ra ∆AHB = ∆AHC (hai cạnh góc vuông).

Do đó AB = AC (hai cạnh tương ứng).

Xét ∆ABC ta có: AB = AC (cmt).

Suy ra ∆ABC là tam giác cân tại A.

Do đó ABC^ = ACB^ .

Ta có : ACH^  + HAC^  = 90° (∆ACH vuông tại H).

 ACH^+ 40° = 90°

 ACB^= 50°

ABC^ = ACB^(cmt)

Nên ABC^ = 50°.

Vậy số đo ABC^  bằng 50°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó.

Lời giải

Đáp án đúng là: A

Vì ΔMNP cân tại M (gt).

Nên MPN^ =MNP^ = (180° NMP^ ) : 2 = (180° − 30°) : 2 = 75°.

Vì Q thuộc đường trung trực của MN.

Nên QM = QN (tính chất đường trung trực của đoạn thẳng).

Xét ΔQMN có:

QM = QN (cmt).

Do đó ΔQMN cân tại Q.

Suy ra PMN^  + PMQ^ =QMN^ = MNQ^ = 75°.

Khi đó PMQ^  = QMN^ PMN^ = 75° − 30° = 45°.

Vậy PMQ^  = 45°.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP