Câu hỏi:

13/07/2024 1,759

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, CA, AB. Chứng minh rằng:

\(\overrightarrow {MN} = \overrightarrow {PA} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

 Xét tam giác ABC, có:

M là trung điểm của BC

N là trung điểm của AC

MN là đường trung bình của tam giác ABC

MN // BC và MN = \(\frac{1}{2}\)BC

Mà PA = PB = \(\frac{1}{2}\)BC

PA = MN

Vì MN // BC nên hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {PA} \) cùng phương, cùng hướng và PA = MN. Do đó \(\overrightarrow {MN} = \overrightarrow {PA} \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là D

I là trung điểm của AB nên IA = IB.

Hơn nữa ta thấy vectơ \(\overrightarrow {IA} \) và vectơ \(\overrightarrow {IB} \) cùng phương và ngược hướng nên \(\overrightarrow {IA} = - \overrightarrow {IB} \) hay \(\overrightarrow {AI} = \overrightarrow {IB} \).

Lời giải

Lời giải

Kẻ đường kính AK (K (O)), gọi M là trung điểm của BC.

Vì H là trực tâm nên BH AC, KC AC (\(\widehat {ACK}\)là góc nội tiếp chắn nửa đường tròn)

BH // KC

Chứng minh tương tự ta được CH // BK (cùng AB)

BHCK là hình bình hành

Ta có M là trung điểm BC nên M là trung điểm của HK

Xét tam giác AHK, có:

O là trung điểm AC

M là trung điểm HK

OM là đường trung bình của tam giác AHK

OM // AH và \(OM = \frac{1}{2}AH\)

Vì O và M cố định nên OM cố định đó đó AH không đổi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay