Câu hỏi:

12/07/2024 777

Cho đường tròn (O) và hai dây AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt đường tròn (O) ở E. Chứng minh rằng: AB2=AD.AE

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) và hai dây AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt (ảnh 1)

Ta có: AB=ACsdAB=sdACABD=E

ΔABDΔAEB có: A chung, ABD=E(cmt)ΔABD~ΔAEB(gg)

ABAE=ADABAB2=AD.AE

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho nửa đường tròn (O), đường kính AB = 2R và điểm C nằm ngoài nửa đường tròn (ảnh 1)

a) AMB=ANB=900 (góc nội tiếp chắn nửa đường tròn)BMACANBC

Xét ΔABC có: ANBCBMACH là trực tâm CHAB

b) ΔCMH vuông tại M có MI là trung tuyến CI=MIΔMCI cân nên CMI=ICM

Chứng minh tương tự ta có: OMA=OAMIMO=900MIMO mà M thuộc (O) nên MI là tiếp tuyến của (O)


Lời giải

Cho đường tròn (O), đường kính AB điểm D thuộc đường tròn. Gọi E là (ảnh 1)

a) ADB=900 (góc nội tiếp chắn nửa đường tròn)BDAEΔABE có BD vừa là đường cao vừa là đường trung tuyến nên ΔABE cân tại B

b) Xét ΔABE:  D là trung điểm AE, O là trung điểm AB nên OD là đường trung bình ΔAEDOD//BE

BEAK(AKB=900 do là góc bội tiếp chắn nửa đường tròn AKOD

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP