Câu hỏi:

09/08/2022 1,274

Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính CAHC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D.

Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính | vecto CA- vecto HC| . (ảnh 1)

Ta có: CAHC=CA+CH

Dựng hình bình hành CAEH.

Do tam giác ABC đều nên AH vừa là trung tuyến vừa là đường cao.

Do đó, AH vuông góc với BC AHB^=90°.

Mà AE // CH (do CAEH là hình bình hành)

Do đó, AH vuông góc với AE HAE^=90°.

Vậy AEBH là hình chữ nhật.

Ta có: CH = BH = BC2=a2 .

Xét tam giác CHA vuông tại H

Áp dụng định lý Pythagore ta có:

AC2 = AH2 + CH2   AH2 = AC2 – CH2   = a2a22=3a24  AH=a32.

EB=AH=a32 (do AEBH là hình chữ nhật)

Xét tam giác CBE vuông tại B

Áp dụng định lý Pythagore ta có:

CE2 = BC2 + BE2 = a2+a322=74a2  CE=a72.

Theo quy tắc hình bình hành:  CA+CH=CE.

CAHC=CA+CH=CE=CE=a72.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Cho hình vuông ABCD cạnh 2a. Tính | vecto AB- vecto DA| (ảnh 1)

Ta có: ABDA=AB+AD=AC (áp dụng quy tắc hình bình hành cho hình vuông ABCD).

Xét tam giác ADC vuông tại D

Áp dụng định lý Pythagore ta có:

AC2 = AD2 + DC2 = (2a)2 + (2a)2 = 8a2   AC = 2a2

Vậy ABDA=2a2.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

Cho tam giác ABC có: AB = AC = a và góc BAC=120 độ. Ta có | vecto AB+AC| = ? (ảnh 1)

Dựng hình bình hành ABDC.

Do tam giác ABC cân có: AB = AC = a nên ABDC là hình thoi cạnh a.

Gọi E là giao điểm hai đường chéo AD và BC của hình thoi.

BAC^=120°CAE^=60° (đường chéo của hình thoi cũng là tia phân giác của các góc ở đỉnh).

Xét tam giác AEC vuông tại E (do trong hình thoi, hai đường chéo vuông góc với nhau) có:

cosCAE^=AEACAE=AC.cosCAE^=a.cos60°=a2.

Lại có: AD = 2AE = 2.a2=a.

Theo quy tắc hình bình hành ta có: AB+AC=ADAB+AC=AD=AD=a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay