Câu hỏi:

09/08/2022 3,584

Trong không gian Oxyz, cho hai điểm M (2; 1; 0) và N (4; 3; 2). Gọi (P) là mặt phẳng trung trực của MN, phương trình của mặt phẳng (P) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Mặt phẳng (P) là mặt phẳng trung trực của MN nên vectơ pháp tuyến của mặt phẳng (P) là vectơ MN

Với M (2; 1; 0) và N (4; 3; 2) ta có:

MN= (2; 2; 2)

Þ MN = (1; 1; 1)

Gọi I là trung điểm của đoạn MN nên tọa độ điểm I là:

xI = xM+xN2 = 2+42= 3

yI = yM+yN2 = 1+32= 2

zI = zM+zN2= 0+22= 1

Vậy tọa độ điểm I là I(3; 2; 1)

Mặt phẳng (P) là mặt phẳng trung trực của MN nên mặt phẳng (P) đi qua điểm I(3; 2; 1)

Mặt phẳng (P) có VTPT là n(P)= (1; 1; 1) và đi qua điểm I(3; 2; 1) nên phương trình mặt phẳng (P) là:

1. (x − 3) + 1. (y − 2) + 1. (z − 1) = 0

Û x + y + z − 6 = 0.

Vậy phương trình mặt phẳng (P) là: x + y + z − 6 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có: Phương trình mặt phẳng Oxy là: z = 0

Mặt cầu (S) cắt mặt phẳng Oxy tạo ra đường tròn giao tuyến có chu vi bằng 8π nên ta có:

2πR = Þ R = 4

Khoảng cách từ điểm I(1; 2; 3) đến mặt phẳng Oxy là:

d(I, (Oxy)) = 302+02+12= 3

Bán kính của mặt cầu (S) là: R1 = R2+d2=42+32= 5

Phương trình mặt cầu (S) có tâm I(1; 2; 3) và bán kính bằng 5 là:

(x 1)2 + (y + 2)2 + (z 3)2 = 25.

Vậy ta chọn phương án A.

Câu 2

Lời giải

Đáp án đúng là: A

Với A (1; 2; 2) và B (3; 1; 0) ta có:

AB = (3 − 1; 1 − 2; 0 − 2)

= (2; −1; −2).

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP