Câu hỏi:

10/08/2022 711

Cho lục giác đều ABCDEF tâm O. Số các vectơ khác vectơ – không, có điểm đầu và điểm cuối là đỉnh của hình lục giác đều ABCDEF và cùng phương với vectơ OB là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B.

Do ABCDEF là lục giác đều tâm O nên ta có: BE // CD // AF.

Hơn nữa đường thẳng OB trùng với đường thẳng BE.

Suy ra OB // CD // AF.

Do đó các vectơ khác vectơ – không, có điểm đầu và điểm cuối là đỉnh của hình lục giác đều ABCDEF và cùng phương với vectơ OB là: BE,  EB,  CD,  DC,  AF,  FA.

Vậy có 6 vectơ thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD tâm O. Khẳng định nào sau đây là sai ?

Xem đáp án » 10/08/2022 1,036

Câu 2:

Cho a b không cùng phương và hai vectơ x=2a+b y=4a2b. Khẳng định nào sau đây là đúng ?

Xem đáp án » 10/08/2022 653

Câu 3:

Cho các vectơ a b không cùng phương và x=a3b, y=2a+6b z=3a+b. Khẳng định nào sau đây là đúng ?

Xem đáp án » 10/08/2022 628

Câu 4:

Cho hình bình hành ABCD. Khẳng định nào sau đây là đúng ?

Xem đáp án » 10/08/2022 590

Câu 5:

Cho hình chữ nhật ABCD, M là trung điểm của CD, N là trung điểm của AB. Số vectơ khác vectơ – không, có điểm đầu và điểm cuối là đỉnh của hình chữ nhật ABCD và cùng phương với MN là:

Xem đáp án » 10/08/2022 408

Câu 6:

Cho các vectơ a b không cùng phương và u=2a3b v=3a9b. Khẳng định nào sau đây là đúng ?

Xem đáp án » 10/08/2022 288

Bình luận


Bình luận