Câu hỏi:

10/08/2022 1,277

Trong không gian Oxyz, cho mặt phẳng (P) đi qua I(2; 3; 1) cắt các trục Ox, Oy, Oz lần lượt tại A(2; 0; 0), B(0; b; 0), C(0; 0; c) với b > 0, c > 0 sao cho thể tích khối tứ diện OABC bằng 1. Giá trị của b + c bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: Phương trình đoạn chắn của mặt phẳng (P) là: x2 + yb + zc = 1

Vì mặt phẳng (P) đi qua điểm I (2; 3; 1) nên thay tọa độ điểm I vào phương trình đoạn chắn mặt phẳng (P) ta được: 22 + 3b + 1c = 1

Þ 3b + 1c = 0 Þ 3b 1c

Þ b = 3c (1)

Với A(2; 0; 0), B(0; b; 0), C(0; 0; c) ta có:

OA = (2; 0; 0), OB = (0; b; 0), OC = (0; 0; c)

Þ OB,OC=bc

Þ OB,OC.OA = 2bc.

Thể tích tứ diện OABC là 16.OB,OC.OA = 16.2bc = 13bc.

Vì thể tích khối tứ diện OABC bằng 1 nên:

13bc = 1 Þ bc = 3 (2)

Thay (1) vào (2) ta có: 3c.c = 3

Þ c2 = 1 Þ c = 1 (do c > 0)

Þ b = 3.1 = 3.

Do đó: b + c = 3 + 1 = 4.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có: Phương trình mặt phẳng Oxy là: z = 0

Mặt cầu (S) cắt mặt phẳng Oxy tạo ra đường tròn giao tuyến có chu vi bằng 8π nên ta có:

2πR = Þ R = 4

Khoảng cách từ điểm I(1; 2; 3) đến mặt phẳng Oxy là:

d(I, (Oxy)) = 302+02+12= 3

Bán kính của mặt cầu (S) là: R1 = R2+d2=42+32= 5

Phương trình mặt cầu (S) có tâm I(1; 2; 3) và bán kính bằng 5 là:

(x 1)2 + (y + 2)2 + (z 3)2 = 25.

Vậy ta chọn phương án A.

Câu 2

Lời giải

Đáp án đúng là: A

Với A (1; 2; 2) và B (3; 1; 0) ta có:

AB = (3 − 1; 1 − 2; 0 − 2)

= (2; −1; −2).

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP