Câu hỏi:
21/01/2021 9,199Trong mặt phẳng tọa độ cho ba điểm A(1; 4) ; B( -2; -2) và C( 4; 2). Xác định tọa độ điểm M sao cho tổng MA2 + 2MB2 + 3MC2 nhỏ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn D.
Gọi điểm M có tọa độ là ( x; y)
MA2 + 2MB2 + 3MC2
= (x - 1)2 + (y - 4)2 + 2[ (x + 2)2 + (y + 2)2] + 3[ (x - 4)2 + (y - 2)2]
= 6x2-18x + 6y2 -12y+ 93 = 1,5. (2x - 3)2 + 6(y - 1)2 + 147/2 ≥ 147/2
Dấu “=” xảy ra khi x = 1,5 và y = 1
Vậy tọa độ điểm M cần tìm là ( 1,5; 1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai chiếc tàu thuỷ cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 600. Tàu thứ nhất chạy với tốc độ 30 km/h, tàu thứ hai chạy với tốc độ 40km/h. Hỏi sau 2 giờ hai tàu cách nhau bao nhiêu km?
Câu 2:
Cho tam giác ABC có b = 7; c = 5, cosA = 3/5. Đường cao ha của tam giác ABC là
Câu 3:
Cho tam giác ABC có A(5;3) : B(2;-1) và C(-1; 5). Tính tọa độ chân đường cao vẽ từ A.
Câu 4:
Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một cái ao. Người ta xác định được một điểm C mà từ đó có thể nhìn được A và B dưới một góc 78024’ . Biết CB = 120m và CA = 250 m. Khoảng cách AB bằng bao nhiêu ?
Câu 7:
Một tam giác có ba cạnh là 52; 56; 60. Bán kính đường tròn ngoại tiếp là:
về câu hỏi!