Câu hỏi:

13/07/2024 3,665 Lưu

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao BD, CE của tam giác cắt nhau tại H DAC,EAB

a) Chứng minh tứ giác AEHD nội tiếp. Từ đó suy ra BCD=AED

b) Kẻ đường kính AK. Chứng minh AB.BC=AK.BD

c) Từ O kẻ OMBCMBC. Chứng minh H, M, K thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao BD (ảnh 1)

a) Ta có AEH=ADH=900AEHD là tứ giác nội tiếp

AED=AHD (cùng chắn AD)

Lý luận được ACB=AHD (cùng phụ CAH)AED=AHD)

b) Xét ΔABKΔBDC có: ABK=BDC=900;

AKB=BCD (cùng chắn AB)ΔABK~ΔBDCg.g

ABBD=AKBCAB.BC=AK.BD

c) Ta có : OMBCM là trung điểm BC

Vì BD//KCAC,BK//HCAB

HCKB là hình bình hành HK đi qua trung điểm M của BC

Vậy 3 điểm H, M, K thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có góc BAC = 45 độ. Các góc B, C đều nhọn. Đường tròn đường (ảnh 1)

a) Chứng minh: AE = BE

Ta có : BEA=900 (góc nội tiếp chắn nửa đường tròn)AEB=900

ΔAEB vuông ở E có BAE=450 nên vuông cân AE=BE

b) BDC=900ADH=900

Tứ giác ADHE có ADH+AEH=1800 nên nội tiếp đường tròn, tâm K của đường tròn này là trung điểm AH

c) ΔAEH vuông ở E có K là trung điểm AH nên KE=KA=12AH

Vậy ΔAKE cân ở K. Do đó KAE=KEA

ΔEOC cân ở O (do OC=OE)OCE=OECH là trực tâm ΔABCAHBC

HAC+ACO=900AEK+OEC=900

Do đó KEO=900OEKE

Điểm K là tâm đường tròn ngoại tiếp tứ giác ADHE nên cũng là tâm đường tròn ngoại tiếp ΔADE

Vậy OE là tiếp tuyến đường tròn ngoại tiếp ΔADE

d) Ta có : DOE=2ABE=2.450=900 (cùng chắn cung DE)

SquatDOE=πa2.9003600=πa24;   SDOE=12OD.OE=12a2

Vậy diện tích viên phân cung DE là :

πa24a22=a24π2

Lời giải

Ta có phương trình hoành độ giao điểm :

x2=mx2x2+mx2=0

Δ=m2+8>0 (với mọi m) nên phương trình luôn có hai nghiệm phân biệt

Áp dụng định lý Vi – et x1+x2=mx1x2=2

Ta có:

x1+2x2+2+4=0x1x2+2x1+x2+4=0hay  2+2m+4=0m=1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP