Câu hỏi:

18/08/2022 1,624

Cho ∆ABC vuông tại A. Vẽ AH ⊥ BC. Tia phân giác HAC^ cắt BC tại K. Các đường phân giác của BAH^ và BHA^ cắt nhau tại O. Gọi M là trung điểm của AK. Khẳng định nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Media VietJack

Ta có ∆ABC vuông tại A nên BAK^+KAC^=90° (do BAC^=90°)

∆AHK vuông tại H nên BKA^+KAH^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

KAC^=KAH^ (do AK là phân giác HAC^).

Suy ra BAK^=BKA^.

Do đó ∆BAK cân tại B.

Vì vậy đáp án A, C sai.

Xét ∆BAH có O là giao điểm của hai đường phân giác xuất phát từ đỉnh A và đỉnh H.

Suy ra BO là đường phân giác thứ ba (xuất phát từ đỉnh B) của ∆BAH.

Do đó BO là tia phân giác của ABK^  (1).

Xét ∆ABM và ∆KBM, có:

BM là cạnh chung.

BA = BK (do ∆BAK cân tại B)

AM = MK (do M là trung điểm AK)

Do đó ∆ABM = ∆KBM (c.c.c)

Suy ra ABM^=KBM^ (cặp góc tương ứng)

Khi đó ta có BM là đường phân giác của ∆BAK.

Do đó BM cũng là tia phân giác của ABK^  (2).

Từ (1), (2), ta suy ra BO trùng với BM.

Do đó ba điểm B, O, M thẳng hàng.

Vì vậy đáp án B đúng, đáp án D sai.

Vậy ta chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Media VietJack

Xét ∆ABH và ∆ACH, có:

AH là cạnh chung.

AHB^=AHC^=90°.

BAH^=CAH^ (do AH là đường phân giác của ∆ABC).

Do đó ∆ABH = ∆ACH (cạnh góc vuoogn – góc nhọn kề).

Suy ra AB = AC (cặp cạnh tương ứng).

Khi đó ∆ABC cân tại A.

Vì không có thêm dữ kiện nào để khẳng định tam giác ABC đều hay vuông hoặc nhọn nên ta chưa khẳng định được các đáp án B, C, D.

Vậy ta chọn đáp án A.

Lời giải

Đáp án đúng là:D

Media VietJack

∆MNP có NE, PF là hai đường phân giác.

Suy ra N1^=12MNP^=12.50°=25° và P1^=12MPN^=12.60°=30°.

∆NHP có: NHP^+N1^+P1^=180°(định lí tổng ba góc của tam giác)

Suy ra NHP^=180°N1^P1^=180°25°30°=125°.

Vậy ta chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP