Câu hỏi:
18/08/2022 921Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0
Đặt \(\sqrt {4{x^2} - 12x} \)= t (t ≥ 0)
Phương trình (1) trở thành t2 + 5t = 0 \( \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = - 5\end{array} \right.\)
Kết hợp với điều kiện t = 0 thoả mãn
Với t = 0 ta có \(\sqrt {4{x^2} - 12x} \)= 0
\( \Rightarrow \) 4x2 – 12x = 0
\( \Rightarrow \) x = 0 hoặc x = 3
Thay lần lượt các nghiệm trên vào phương trình, ta thấy x = 0 và x = 3 thoả mãn.
Vậy phương trình có hai nghiệm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' < 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\{(m - 2)^2} - 2m + 1 < 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\{m^2} - 6m + 5 < 0\end{array} \right.\)
Xét f(m) = m2 – 6m + 5 có ∆ = 16 > 0 hai nghiệm phân biệt là m = 1 ; m = 5 và a = 1 > 0
Ta có bảng xét dấu
m |
–∞ 1 5 + ∞ |
f(m) |
+ 0 – 0 + |
Suy ra để f(m) < 0 thì 1 < m < 5.
Vậy với 1 < m < 5 thì bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.
Lời giải
Đáp án đúng là: C
\[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7 \Leftrightarrow {x^2} - 2x - 3 + 3\sqrt {{x^2} - 2x - 3} - 4 = 0\]
Đặt \[\sqrt {{x^2} - 2x - 3} = t(t \ge 0)\] ta có phương trình t2 + 3t – 4 =0\[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 4\end{array} \right.\]
Kết hợp với điều kiện của t ta có t = 1 thỏa mãn
Với t = 1 \[ \Rightarrow \sqrt {{x^2} - 2x - 3} = 1 \Leftrightarrow {x^2} - 2x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 + \sqrt 5 \\x = 1 - \sqrt 5 \end{array} \right.\]
Thay lần lượt các nghiệm vào phương trình ta có \[x = 1 + \sqrt 5 ;x = 1 - \sqrt 5 \] đều thỏa mãn
Vậy tích các nghiệm của phương trình S = – 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.