Câu hỏi:
18/08/2022 1,537Cho ∆ABC có BD và CE lần lượt là các đường cao hạ từ B, C và BD = CE. Gọi H là giao điểm của BD và CE. Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Đáp án đúng là: B
• Xét ∆DBA và ∆ECA, có:
,
BD = CE (giả thiết),
(cùng phụ với ).
Do đó ∆DBA = ∆ECA (cạnh góc vuông – góc nhọn kề)
Suy ra AB = AC (cặp cạnh tương ứng).
Vì vậy ∆ABC cân tại A.
Do đó đáp án A đúng.
• Xét ∆ABC có BD, CE là hai đường cao.
Mà BD cắt CE tại H.
Suy ra H là trực tâm của ∆ABC.
Do đó đáp án C đúng.
• ∆ABC có H là trực tâm.
Suy ra AH là đường cao thứ ba của ∆ABC.
Gọi F là giao điểm của AH và BC.
Ta suy ra AF ⊥ BC.
Xét ∆ABF và ∆ACF, có:
,
AF là cạnh chung,
AB = AC (do ∆ABC cân tại A).,
Do đó ∆ABF = ∆ACF (cạnh huyền – cạnh góc vuông).
Suy ra (cặp góc tương ứng).
Suy ra AF là đường phân giác của ∆ABC hay AH là đường phân giác của ∆ABC.
Do đó đáp án D đúng.
Vậy ta chọn đáp án B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
∆AKC có CH, KE là hai đường cao.
Mà CH cắt KE tại D.
Suy ra D là trực tâm của ∆AKC.
Do đó AD ⊥ KC.
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: D
• ∆ABC có AM là đường trung tuyến.
Suy ra M là trung điểm BC.
Xét ∆ABM và ∆ACM, có:
AM là cạnh chung,
AB = AC (do ∆ABC cân tại A),
BM = CM (do M là trung điểm BC),
Do đó ∆ABM = ∆ACM (c.c.c).
Suy ra (cặp góc tương ứng).
Mà (hai góc kề bù).
Vì vậy .
Do đó AM ⊥ BC.
Suy ra AM là đường cao của ∆ABC.
∆ABC có AM, BH là hai đường cao.
Mà AM cắt BH ở K.
Suy ra K là trực tâm của ∆ABC.
Do đó đáp án A đúng.
• Vì K là trực tâm của ∆ABC nên CK ⊥ AB.
Do đó đáp án B đúng.
• ∆ABC cân tại A nên (tính chất tam giác cân)
Mà (định lí tổng ba góc trong một tam giác)
Do đó
Ta có (cùng phụ với ).
Vì K thuộc AM nên ba điểm A, K, M thẳng hàng.
Suy ra (hai góc kề bù).
Do đó .
Vì vậy đáp án C sai.
Vậy ta chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 02
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
Bộ 15 đề thi Học kì 2 Toán 7 có đáp án (Mới nhất) - đề 2