Câu hỏi:

13/07/2024 5,922

Quäng đường AB dài 50km. Hai xe máy khởi hành cùng một lúc từ A đến B. Vận tốc xe thứ nhất lớn hơn vận tốc xe thứ hai 10km/h nên xe thứ nhất đến B trước xe thứ hai 15 phút. Tính vận tốc của mỗi xe.

(Sở Bình Phước năm học 2018-2019)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Phân tích đề bài

Gọi ẩn là vận tốc xe thứ nhất, từ đó biểu diễn vận tốc xe thứ hai theo ẩn. Sau đó lập bảng:

 

Vận tốc (km/h)

Thời gian (h)

Quảng đường (km)

Xe thứ nhất

x

\(\frac{{50}}{x}\)

50

Xe thứ hai

\(x - 10\)

\(\frac{{50}}{{x - 10}}\)

50

 

Từ giả thiết, xe thứ nhất đến B trước xe thứ hai 15 phút, suy ra phương trình

Giải chi tiết

Đổi 15 phút \( = \frac{1}{4}\left( h \right)\)

Gọi vận tốc xe thứ nhất là x (km/h). Điều kiện \(x > 10\)

Khi đó vận tốc xe thứ hai là \(x - 10\) (km/h)

Thời gian xe thứ nhất đi từ A đến B là \(\frac{{50}}{x}\) (h)

Thời gian xe thứ hai đi từ A đến B là \(\frac{{50}}{{x - 10}}\) (h)

Vì xe thứ nhất đến B trước xe thứ hai 15 phút nên ta có phương trình:

\(\frac{{50}}{{x - 10}} - \frac{{50}}{x} = \frac{1}{4} \Leftrightarrow {x^2} - 10x - 2000 = 0 \Leftrightarrow \left( {x - 50} \right)\left( {x + 40} \right) = 0\)  

Vậy vận tốc xe thứ nhất là 50 km/h; vận tốc xe thứ hai là 40 km/h.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải chi tiết

Gọi vận tốc của xe máy và ô tô lần lượt là xy (km/h). Điều kiện: \[x,y > 0.\]

Vận tốc của ô tô lớn hơn vận tốc của xe máy 10km/h nên \[y - x = 10.\] (1)

Thời gian xe máy đi từ A đến B là \(\frac{{AB}}{x} = \frac{{200}}{x}\) (h).

Thời gian ô tô đi từ A đến B là \(\frac{{AB}}{y} = \frac{{200}}{y}\) (h)

Vì ô tô xuất phát sau xe máy 1 h mà 2 xe đến nơi cùng lúc, do đó thời gian đi của ô tô ít hơn xe máy 1h. Ta có phương trình: \(\frac{{200}}{x} - \frac{{200}}{y} = 1\)     (2)

Từ (1) suy ra \(y = x + 10.\) thay vào (2) ta được:

\(\frac{{200}}{x} - \frac{{200}}{{x + 10}} = 1 \Leftrightarrow \frac{{200\left( {x + 10} \right) - 200x}}{{x\left( {x + 10} \right)}} = 1 \Leftrightarrow 200x + 2000 - 200x = {x^2} + 10x\)

\( \Leftrightarrow {x^2} + 10x - 2000 = 0\)  

Vậy vận tốc của xe máy và ô tô lần lượt là 40km/h và 50km/h.

Lời giải

Phân tích đề bài

Gọi hai ẩn là vận tốc riêng của ca nô và vận tốc dòng nước.

Lưu ý: Vận tốc xuôi dòng \[ = \] vận tốc thực của ca nô \[ + \] vận tốc dòng nước.

Vận tốc ngược dòng \[ = \] vận tốc thực của ca nô \[ - \] vận tốc dòng nước.

Lập bảng:

 

 

Vận tốc (km/h)

Thời gian (h)

Quảng đường (km)

Dự định

Xuôi dòng

\(x + y\)

\(\frac{{78}}{{x + y}}\)

78

Ngược dòng

\(x - y\)

\(\frac{{44}}{{x - y}}\)

44

Thực tế

Xuôi dòng

\(x + y\)

\(\frac{{13}}{{x + y}}\)

13

Ngược dòng

\(x - y\)

\(\frac{{11}}{{x - y}}\)

11

 

Giải chi tiết

Gọi vận tốc riêng của ca nô là x (km/h). Điều kiện: \[x > 0.\]

Gọi vận tốc của dòng nước là y (km/h). Điều kiện: \[y > 0.\]

Ca nô xuôi dòng đi với vận tốc \[x + y\] (km/h).

Đi đoạn đường 78km nên thời gian đi là \(\frac{{78}}{{x + y}}\) (giờ).

Ca nô đi ngược dòng với vận tốc \(x - y\) (km/h).

Đi đoạn đường 44km nên thời gian đi là \(\frac{{44}}{{x - y}}\) (giờ)

Tổng thời gian xuôi dòng là 78km và ngược dòng là 44km mất 5 giờ nên ta có phương trình:

\(\frac{{78}}{{x + y}} + \frac{{44}}{{x - y}} = 5\) (1)

Ca nô xuôi dòng 13km và ngược dòng 11km thì mất 1 giờ nên ta có phương trình:

\(\frac{{13}}{{x + y}} + \frac{{11}}{{x - y}} = 1\) (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}\frac{{78}}{{x + y}} + \frac{{44}}{{x - y}} = 5\\\frac{{13}}{{x + y}} + \frac{{11}}{{x - y}} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{x + y}} = \frac{1}{{26}}\\\frac{1}{{x - y}} = \frac{1}{{22}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 26\\x - y = 22\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 24\\y = 2\end{array} \right.\) (thỏa mãn)

Vậy vận tốc riêng của ca nô là 24 km/h và vận tốc của dòng nước là 2km/h.