Câu hỏi:

13/07/2024 9,065

Một ô tô và một xe máy ở hai địa điểm A và B cách nhau 180km, khởi hành cùng một lúc đi ngược chiều và gặp nhau sau 2 giờ. Biết vận tốc của ô tô lớn hơn vận tốc của xe máy 10km/h. Tính vận tốc của mỗi xe.

(Sở Nghệ An năm học 2014-2015)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải chi tiết

Gọi vận tốc của ô tô là x (km/h), vận tốc của xe máy là y (km/h). Điều kiện: \[x > y > 0,{\rm{ }}x > 10.\]

Ta có phương trình: \[x - y = 10.\] (1)

Sau 2 giờ ô tô đi được quãng đường là 2x (km).

Sau 2 giờ xe máy đi được quãng đường là: 2y (km).

Sau 2 giờ họ gặp nhau nên ta có phương trình: \[2x + 2y = 180\] hay \[x + y = 90.\] (2)

Từ (1), (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = 10\\x + y = 90\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\y = 40\end{array} \right.\) (thỏa mãn).

Vậy vận tốc của ô tô là 50 km/h và vận tốc của xe máy là 40km/h.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải chi tiết

Gọi vận tốc của xe máy và ô tô lần lượt là xy (km/h). Điều kiện: \[x,y > 0.\]

Vận tốc của ô tô lớn hơn vận tốc của xe máy 10km/h nên \[y - x = 10.\] (1)

Thời gian xe máy đi từ A đến B là \(\frac{{AB}}{x} = \frac{{200}}{x}\) (h).

Thời gian ô tô đi từ A đến B là \(\frac{{AB}}{y} = \frac{{200}}{y}\) (h)

Vì ô tô xuất phát sau xe máy 1 h mà 2 xe đến nơi cùng lúc, do đó thời gian đi của ô tô ít hơn xe máy 1h. Ta có phương trình: \(\frac{{200}}{x} - \frac{{200}}{y} = 1\)     (2)

Từ (1) suy ra \(y = x + 10.\) thay vào (2) ta được:

\(\frac{{200}}{x} - \frac{{200}}{{x + 10}} = 1 \Leftrightarrow \frac{{200\left( {x + 10} \right) - 200x}}{{x\left( {x + 10} \right)}} = 1 \Leftrightarrow 200x + 2000 - 200x = {x^2} + 10x\)

\( \Leftrightarrow {x^2} + 10x - 2000 = 0\)  

Vậy vận tốc của xe máy và ô tô lần lượt là 40km/h và 50km/h.

Lời giải

Phân tích đề bài

Gọi hai ẩn là vận tốc riêng của ca nô và vận tốc dòng nước.

Lưu ý: Vận tốc xuôi dòng \[ = \] vận tốc thực của ca nô \[ + \] vận tốc dòng nước.

Vận tốc ngược dòng \[ = \] vận tốc thực của ca nô \[ - \] vận tốc dòng nước.

Lập bảng:

 

 

Vận tốc (km/h)

Thời gian (h)

Quảng đường (km)

Dự định

Xuôi dòng

\(x + y\)

\(\frac{{78}}{{x + y}}\)

78

Ngược dòng

\(x - y\)

\(\frac{{44}}{{x - y}}\)

44

Thực tế

Xuôi dòng

\(x + y\)

\(\frac{{13}}{{x + y}}\)

13

Ngược dòng

\(x - y\)

\(\frac{{11}}{{x - y}}\)

11

 

Giải chi tiết

Gọi vận tốc riêng của ca nô là x (km/h). Điều kiện: \[x > 0.\]

Gọi vận tốc của dòng nước là y (km/h). Điều kiện: \[y > 0.\]

Ca nô xuôi dòng đi với vận tốc \[x + y\] (km/h).

Đi đoạn đường 78km nên thời gian đi là \(\frac{{78}}{{x + y}}\) (giờ).

Ca nô đi ngược dòng với vận tốc \(x - y\) (km/h).

Đi đoạn đường 44km nên thời gian đi là \(\frac{{44}}{{x - y}}\) (giờ)

Tổng thời gian xuôi dòng là 78km và ngược dòng là 44km mất 5 giờ nên ta có phương trình:

\(\frac{{78}}{{x + y}} + \frac{{44}}{{x - y}} = 5\) (1)

Ca nô xuôi dòng 13km và ngược dòng 11km thì mất 1 giờ nên ta có phương trình:

\(\frac{{13}}{{x + y}} + \frac{{11}}{{x - y}} = 1\) (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}\frac{{78}}{{x + y}} + \frac{{44}}{{x - y}} = 5\\\frac{{13}}{{x + y}} + \frac{{11}}{{x - y}} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{x + y}} = \frac{1}{{26}}\\\frac{1}{{x - y}} = \frac{1}{{22}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 26\\x - y = 22\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 24\\y = 2\end{array} \right.\) (thỏa mãn)

Vậy vận tốc riêng của ca nô là 24 km/h và vận tốc của dòng nước là 2km/h.