Câu hỏi:

11/07/2024 1,658

Để phục vụ cho Festival Huế 2018, một cơ sở sản xuất nón lá dự kiến làm ra 300 chiếc nón lá trong một thời gian đã định. Do được bổ sung thêm nhân công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu, vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định. Hỏi theo dự kiến ban đầu, mỗi ngày cơ sở đó làm ra bao nhiêu chiếc nón lá? Biết rằng số chiếc nón lá làm ra mỗi ngày là bằng nhau và nguyên chiếc.

(Sở Thừa Thiên Huế năm học 2018-2019)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phân tích đề bài

Đề bài hỏi “Theo dự kiến ban đầu, mỗi ngày làm được bao nhiêu chiếc nón lá?”, tức là ta phải tìm năng suất theo dự kiến. Do đó ta sẽ gọi ẩn là năng suất dự kiến.

Lập bảng

 

Năng suất (chiếc/ngày)

Thời gian (ngày)

Khối lượng công việc

Dự kiến

x

\(\frac{{300}}{x}\)

300

Thực tế

\(x + 5\)

\(\frac{{300}}{{x + 5}}\)

300

Từ đó suy ra phương trình.

Giải chỉ tiết

Gọi x là số chiếc nón là làm ra trong mỗi ngày theo dự kiến ban đầu. Điều kiện: \(x \in {\mathbb{N}^*}\)

Thời gian làm xong 300 chiếc nón là theo dự định là \(\frac{{300}}{x}\) (ngày).

Thời gian thực tế làm xong 300 chiếc nón lá là \(\frac{{300}}{{x + 5}}\) (ngày).

Vì thực tế cơ sở đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định nên ta có phương trình:

\(\frac{{300}}{x} - \frac{{300}}{{x + 5}} = 3 \Leftrightarrow 300\left( {x + 5} \right) - 300x = 3x\left( {x + 5} \right)\)

\( \Leftrightarrow 3{x^2} + 15x - 1500 = 0\)  

Vậy theo dự kiến ban đầu thì mỗi ngày cơ sở đó làm được 20 chiếc nón lá.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phân tích đề bài

Lập bảng:

 

Số cây trồng được trong một ngày (cây)

Thời gian hoàn thành (ngày)

Số cây tròng được (cây)

Dự định

\(x\)

\(\frac{{240}}{x}\)

240

Thực tế

\(x + 15\)

\(\frac{{270}}{{x + 15}}\)

270

 

Dựa vào giả thiết “họ hoàn thành công việc sớm hơn dự định 2 ngày” để suy ra phương trình.

Giải chi tiết

Gọi số cây mà chi đoàn dự định trồng trong một ngày là x (cây). Điều kiện: \(x \in \mathbb{N}*\)

Số cây mà chi đoàn trồng được trong một ngày theo thực tế là \[x + 15\] (cây).

Số cây trồng được theo thực tế là \[240 + 30 = 270\] (cây).

Thời gian trồng 240 cây xanh theo dự định là \(\frac{{240}}{x}\) (ngày).

Thời gian tròng 270 cây xanh theo thực tế là \(\frac{{270}}{{x + 15}}\) (ngày).

Do họ đã hoàn thành công việc sớm hơn dự định 2 ngày nên ta có phương trình:

\(\frac{{240}}{x} - \frac{{270}}{{x + 15}} = 2 \Leftrightarrow 240\left( {x + 15} \right) - 270x = 2x\left( {x + 15} \right)\)

\[ \Leftrightarrow 2{x^2} + 60x - 3600 = 0 \Leftrightarrow \]  

Vậy số cây mà chi đoàn dự định tròng trong một ngày là 30 cây.

Lời giải

Phân tích đề bài

Lập bảng:

 

Mỗi xe chở được (tấn)

Số xe (xe)

Số hàng chở được (tấn)

Dự định

\(\frac{{80}}{x}\)

\(x\)

80

Thực tế

\(\frac{{80}}{{x - 4}}\)

\(x - 4\)

80

Thực tế mỗi xe phải chở nhiều hơn 1 tấn hàng nên suy ra phương trình.

Giải chi tiết

Gọi số xe lúc đầu của đội là x (xe). Điều kiện: \[x > 4,{\rm{ }}x \in \mathbb{N}\]

Mỗi xe dự định chở được \(\frac{{80}}{x}\) (tấn).

Số xe chở hàng thực tế của đội là \(x - 4\) (xe).

Mỗi xe thực tế chở được \(\frac{{80}}{{x - 4}}\)(tấn).

Vì mỗi xe còn lại phải chở nhiều hơn dự định 1

\[\frac{{80}}{{x - 4}} - \frac{{80}}{x} = 1 \Leftrightarrow 80x - 80\left( {x - 4} \right) = x\left( {x - 4} \right) \Leftrightarrow {x^2} - 4x - 320 = 0\]  

Vậy số xe lúc đầu của đội là 20 xe.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay