Câu hỏi:

19/08/2025 2,560 Lưu

Một người dự định đi xe máy từ tỉnh A đến tỉnh B cách nhau 90 km trong một thời gian đã định. Sau khi đi được 1 giờ người đó nghỉ 9 phút. Do đó, để đến tỉnh B đúng hẹn, người ấy phải tăng vận tốc thêm 4 km/h. Tính vận tốc lúc đầu của người đó.

(Đề thi vào 10 tỉnh Bình Dương năm học 2018-2019)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi x (km/h) là vận tốc đi lúc đầu \[\left( {x > 0} \right).\] Khi đó vận tốc đi lúc sau là \[x + 4\] (km/h).

\(\frac{{90}}{x}\) là thời gian đi dư đinh, \(\frac{{90 - x}}{{x + 4}}\) là thời gian đi lúc tăng tốc.

Ta thiết lập được phương trình: \(1 + \frac{9}{{60}} + \frac{{90 - x}}{{x + 4}} = \frac{{90}}{x}\)

Giải phương trình trên ta được nghiệm \[{x_1} = 36,{\rm{ }}{x_2} = - \frac{{200}}{3}\]

Đối chiếu với điều kiện, suy ra vận tốc ban đầu của người đó là 36km/h.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số chi tiết máy của tổ I sản xuất trong tháng đầu. Điều kiện: \[0 < x < 800,{\rm{ }}x \in \mathbb{N}.\]

Số chi tiết máy của tổ II sản xuất trong tháng đầu là: \[800 - x\] (chi tiết).

Số chi tiết máy tổ I vượt mức ở tháng thứ hai là: \[\frac{{15}}{{100}}x\] (chi tiết).

Số chi tiết máy tổ II vượt mức ở tháng thứ hai là: \[\frac{{20}}{{100}}\left( {800 - x} \right)\] (chi tiết).

Số chi tiết máy cả hai tổ vượt mức trong tháng thứ hai là: \[945 - 800 = 145\] (chi tiết).

Ta có phương trình: \[\frac{{15}}{{100}}x + \frac{{20}}{{100}}\left( {800 - x} \right) = 145 \Leftrightarrow x = 300\] (thỏa mãn).

Vậy trong tháng đầu tổ I sản xuất được 300 chi tiết máy, tổ II sản xuất được 500 chi tiết máy.

Lời giải

Gọi số công nhân theo dự định để hoàn thành công việc là x (người).

Điều kiện: \[x \in \mathbb{N},{\rm{ }}x > 2.\]

Số ngày dự định hoàn thành công việc là y (ngày). Điều kiện: \[y \in \mathbb{N},{\rm{ }}y > 4.\]

Theo dự định, để hoàn thành công việc cần số công nhân là xy.

Vì nếu bớt đi 2 công nhân thì phải mất thêm 3 ngày mới hoàn thành công việc nên ta có phương trình: \[\left( {x - 2} \right)\left( {y + 3} \right) = xy\] (1)

Vì nếu tăng thêm 5 công nhân thì công việc hoàn thành sớm hơn 4 ngày nên ta có phương trình: \[\left( {x + 5} \right)\left( {y - 4} \right) = xy.\] (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}\left( {x - 2} \right)\left( {y + 3} \right) = xy\\\left( {x + 5} \right)\left( {y - 4} \right) = xy{\rm{ }}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 6\\ - 4x + 5y = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = 12\end{array} \right.\) (thỏa mãn)

Vậy theo dự định cần 10 công nhân và làm trong 12 ngày thì hoàn thành công việc.