Câu hỏi:
13/07/2024 5,711Một người đi xe máy từ thành phố A đến thành phố B với một vận tốc dự định trước. Hai thành phố cách nhau 150 km. Sau khi đi được quãng đường thì người đó tăng vận tốc thêm 10 km/h trên toàn bộ quãng đường còn lại. Tính vận tốc dự định ban đâu và thời gian di chuyển của người đó, biết rằng người đó đến B sớm hơn dự định 36 phút.
(Thi thử THPT Phan Huy Chú-Hà Nội năm 2018)
Quảng cáo
Trả lời:
Đổi 36 phút\[ = \frac{3}{5}\] (h).
Gọi x (km/h) là vận tốc dự định của người đó. Điều kiện: \[x > 0.\]
Thời gian người đó dự định đi hết quãng đường là \(\frac{{150}}{x}\) (h).
Thời gian người đó đi \(\frac{1}{5}\) quãng đường là \(\frac{{30}}{x}\) (h).
Thời gian người đó đi quãng đường còn lại là \(\frac{{120}}{{x + 10}}\) (h).
Theo bài ra ta có phương trình: \(\frac{{30}}{x} + \frac{{120}}{{x + 10}} + \frac{3}{5} = \frac{{150}}{x}\)
Giải phương trình ta được \[x = 40\] km/h.
Thời gian di chuyển là: \(t = \frac{{30}}{{40}} + \frac{{120}}{{50}} = \frac{{63}}{{20}}\) (h).
Vây vận tốc dự định của người đó là 40km/h và thời gian di chuyển là \(\frac{{63}}{{20}}\) (h).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x là số chi tiết máy của tổ I sản xuất trong tháng đầu. Điều kiện: \[0 < x < 800,{\rm{ }}x \in \mathbb{N}.\]
Số chi tiết máy của tổ II sản xuất trong tháng đầu là: \[800 - x\] (chi tiết).
Số chi tiết máy tổ I vượt mức ở tháng thứ hai là: \[\frac{{15}}{{100}}x\] (chi tiết).
Số chi tiết máy tổ II vượt mức ở tháng thứ hai là: \[\frac{{20}}{{100}}\left( {800 - x} \right)\] (chi tiết).
Số chi tiết máy cả hai tổ vượt mức trong tháng thứ hai là: \[945 - 800 = 145\] (chi tiết).
Ta có phương trình: \[\frac{{15}}{{100}}x + \frac{{20}}{{100}}\left( {800 - x} \right) = 145 \Leftrightarrow x = 300\] (thỏa mãn).
Vậy trong tháng đầu tổ I sản xuất được 300 chi tiết máy, tổ II sản xuất được 500 chi tiết máy.
Lời giải
Gọi x (giờ) là thời gian người thứ nhất làm xong công việc \[\left( {x > 0} \right).\]
Thời gian mà người thứ hai làm riêng xong công việc là \[x + 2\] (giờ).
Trong 1 giờ:
+ Người thứ nhất làm được \(\frac{1}{x}\) (công việc).
+ Người thứ hai làm được \(\frac{1}{{x + 2}}\) (công việc).
+ Cả hai người làm được \(1:\frac{{12}}{5} = \frac{5}{{12}}\) (công việc).
Ta có phương trình: \(\frac{1}{x} + \frac{1}{{x + 2}} = \frac{5}{{12}} \Leftrightarrow x = 4\)
Vậy thời gian người thứ nhất làm xong công việc là 4 giờ, thời gian người thứ hai làm xong công việc là 6 giờ.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Chuyên đề 8: Hình học (có đáp án)