Câu hỏi:

19/08/2025 13,345 Lưu

Theo kế hoạch, một người công nhân phải hoàn thành 84 sản phẩm trong một thời gian nhất định. Do cải tiến kĩ thuật, nên thực tế mỗi giờ người đó đã làm được nhiều hơn 2 sản phẩm so với số sản phẩm phải làm trong một giờ theo kế hoạch. Vì vậy, người đó hoàn thành công việc sớm hơn dự định 1 giờ. Hỏi theo kế hoạch, mỗi giờ người cồng nhân phải làm bao nhiêu sản phẩm?

(Đề thi vào 10 tỉnh Quảng Ninh năm học 2015-2016)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi x là số sản phẩm mỗi giờ mà người công nhân phải hoàn thành theo kế hoạch. Điều kiện: \[x \in {\mathbb{N}^*},x < 84.\]

Số sản phẩm mỗi giờ mà người công nhân phải hoàn thành theo thực tế là \[x + 2.\]

Thời gian mà công nhân hoàn thành theo kế hoạch \(\frac{{84}}{x}\) (h).

Thời gian mà công nhân hoàn thành theo thực tế \(\frac{{84}}{{x + 2}}\) (h).

Người công nhân đó hoàn thành công việc sớm hơn định 1 giờ nên ta có phương trình

\(\frac{{84}}{x} - \frac{{84}}{{x + 2}} = 1\)

Vậy theo kế hoạch mỗi giờ người công nhân phải làm 12 sản phẩm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số chi tiết máy của tổ I sản xuất trong tháng đầu. Điều kiện: \[0 < x < 800,{\rm{ }}x \in \mathbb{N}.\]

Số chi tiết máy của tổ II sản xuất trong tháng đầu là: \[800 - x\] (chi tiết).

Số chi tiết máy tổ I vượt mức ở tháng thứ hai là: \[\frac{{15}}{{100}}x\] (chi tiết).

Số chi tiết máy tổ II vượt mức ở tháng thứ hai là: \[\frac{{20}}{{100}}\left( {800 - x} \right)\] (chi tiết).

Số chi tiết máy cả hai tổ vượt mức trong tháng thứ hai là: \[945 - 800 = 145\] (chi tiết).

Ta có phương trình: \[\frac{{15}}{{100}}x + \frac{{20}}{{100}}\left( {800 - x} \right) = 145 \Leftrightarrow x = 300\] (thỏa mãn).

Vậy trong tháng đầu tổ I sản xuất được 300 chi tiết máy, tổ II sản xuất được 500 chi tiết máy.

Lời giải

Gọi số công nhân theo dự định để hoàn thành công việc là x (người).

Điều kiện: \[x \in \mathbb{N},{\rm{ }}x > 2.\]

Số ngày dự định hoàn thành công việc là y (ngày). Điều kiện: \[y \in \mathbb{N},{\rm{ }}y > 4.\]

Theo dự định, để hoàn thành công việc cần số công nhân là xy.

Vì nếu bớt đi 2 công nhân thì phải mất thêm 3 ngày mới hoàn thành công việc nên ta có phương trình: \[\left( {x - 2} \right)\left( {y + 3} \right) = xy\] (1)

Vì nếu tăng thêm 5 công nhân thì công việc hoàn thành sớm hơn 4 ngày nên ta có phương trình: \[\left( {x + 5} \right)\left( {y - 4} \right) = xy.\] (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}\left( {x - 2} \right)\left( {y + 3} \right) = xy\\\left( {x + 5} \right)\left( {y - 4} \right) = xy{\rm{ }}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 6\\ - 4x + 5y = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = 12\end{array} \right.\) (thỏa mãn)

Vậy theo dự định cần 10 công nhân và làm trong 12 ngày thì hoàn thành công việc.