Câu hỏi:

19/08/2025 2,505 Lưu

Một vật là hợp kim đồng và kẽm có khối lượng là 124 gam và có thể tích là 15cm3 Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89 gam đồng thì có thể tích là 10cm3  và 7 gam kẽm thì có thể tích là 1cm3 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số gam đồng và kẽm có trong hợp kim lần lượt là xy (gam). Điều kiện \(0 < x,y < 124\)

Với 1 gam đồng có thể tích là \[\frac{{10}}{{89}}\left( {c{m^3}} \right)\] nên x gam đồng có thể tích \[\frac{{10x}}{{89}}\left( {c{m^3}} \right)\]

Với 1 gam kẽm có thể tích là \[\frac{1}{7}\left( {c{m^3}} \right)\] nên y gam kẽm có thể tích là \[\frac{y}{7}\left( {c{m^3}} \right)\]

Theo đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 150\\\frac{{10x}}{{89}}{\rm{ + }}\frac{y}{7} = 15\end{array} \right.\)

Giải hệ phương trình ta được: \[x = 89,{\rm{ }}y = 35\] (thỏa mãn điều kiện).

Vậy trong hợp kim có 89 gam đồng và 35 gam kẽm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số chi tiết máy của tổ I sản xuất trong tháng đầu. Điều kiện: \[0 < x < 800,{\rm{ }}x \in \mathbb{N}.\]

Số chi tiết máy của tổ II sản xuất trong tháng đầu là: \[800 - x\] (chi tiết).

Số chi tiết máy tổ I vượt mức ở tháng thứ hai là: \[\frac{{15}}{{100}}x\] (chi tiết).

Số chi tiết máy tổ II vượt mức ở tháng thứ hai là: \[\frac{{20}}{{100}}\left( {800 - x} \right)\] (chi tiết).

Số chi tiết máy cả hai tổ vượt mức trong tháng thứ hai là: \[945 - 800 = 145\] (chi tiết).

Ta có phương trình: \[\frac{{15}}{{100}}x + \frac{{20}}{{100}}\left( {800 - x} \right) = 145 \Leftrightarrow x = 300\] (thỏa mãn).

Vậy trong tháng đầu tổ I sản xuất được 300 chi tiết máy, tổ II sản xuất được 500 chi tiết máy.

Lời giải

Gọi số công nhân theo dự định để hoàn thành công việc là x (người).

Điều kiện: \[x \in \mathbb{N},{\rm{ }}x > 2.\]

Số ngày dự định hoàn thành công việc là y (ngày). Điều kiện: \[y \in \mathbb{N},{\rm{ }}y > 4.\]

Theo dự định, để hoàn thành công việc cần số công nhân là xy.

Vì nếu bớt đi 2 công nhân thì phải mất thêm 3 ngày mới hoàn thành công việc nên ta có phương trình: \[\left( {x - 2} \right)\left( {y + 3} \right) = xy\] (1)

Vì nếu tăng thêm 5 công nhân thì công việc hoàn thành sớm hơn 4 ngày nên ta có phương trình: \[\left( {x + 5} \right)\left( {y - 4} \right) = xy.\] (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}\left( {x - 2} \right)\left( {y + 3} \right) = xy\\\left( {x + 5} \right)\left( {y - 4} \right) = xy{\rm{ }}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 6\\ - 4x + 5y = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = 12\end{array} \right.\) (thỏa mãn)

Vậy theo dự định cần 10 công nhân và làm trong 12 ngày thì hoàn thành công việc.