Câu hỏi:

13/07/2024 1,799

Một vật là hợp kim đồng và kẽm có khối lượng là 124 gam và có thể tích là 15cm3 Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89 gam đồng thì có thể tích là 10cm3  và 7 gam kẽm thì có thể tích là 1cm3 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số gam đồng và kẽm có trong hợp kim lần lượt là xy (gam). Điều kiện \(0 < x,y < 124\)

Với 1 gam đồng có thể tích là \[\frac{{10}}{{89}}\left( {c{m^3}} \right)\] nên x gam đồng có thể tích \[\frac{{10x}}{{89}}\left( {c{m^3}} \right)\]

Với 1 gam kẽm có thể tích là \[\frac{1}{7}\left( {c{m^3}} \right)\] nên y gam kẽm có thể tích là \[\frac{y}{7}\left( {c{m^3}} \right)\]

Theo đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 150\\\frac{{10x}}{{89}}{\rm{ + }}\frac{y}{7} = 15\end{array} \right.\)

Giải hệ phương trình ta được: \[x = 89,{\rm{ }}y = 35\] (thỏa mãn điều kiện).

Vậy trong hợp kim có 89 gam đồng và 35 gam kẽm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số chi tiết máy của tổ I sản xuất trong tháng đầu. Điều kiện: \[0 < x < 800,{\rm{ }}x \in \mathbb{N}.\]

Số chi tiết máy của tổ II sản xuất trong tháng đầu là: \[800 - x\] (chi tiết).

Số chi tiết máy tổ I vượt mức ở tháng thứ hai là: \[\frac{{15}}{{100}}x\] (chi tiết).

Số chi tiết máy tổ II vượt mức ở tháng thứ hai là: \[\frac{{20}}{{100}}\left( {800 - x} \right)\] (chi tiết).

Số chi tiết máy cả hai tổ vượt mức trong tháng thứ hai là: \[945 - 800 = 145\] (chi tiết).

Ta có phương trình: \[\frac{{15}}{{100}}x + \frac{{20}}{{100}}\left( {800 - x} \right) = 145 \Leftrightarrow x = 300\] (thỏa mãn).

Vậy trong tháng đầu tổ I sản xuất được 300 chi tiết máy, tổ II sản xuất được 500 chi tiết máy.

Lời giải

Gọi x (giờ) là thời gian người thứ nhất làm xong công việc \[\left( {x > 0} \right).\]

Thời gian mà người thứ hai làm riêng xong công việc là \[x + 2\] (giờ).

Trong 1 giờ:

+ Người thứ nhất làm được \(\frac{1}{x}\) (công việc).

+ Người thứ hai làm được \(\frac{1}{{x + 2}}\) (công việc).

+ Cả hai người làm được \(1:\frac{{12}}{5} = \frac{5}{{12}}\) (công việc).

Ta có phương trình: \(\frac{1}{x} + \frac{1}{{x + 2}} = \frac{5}{{12}} \Leftrightarrow x = 4\)

Vậy thời gian người thứ nhất làm xong công việc là 4 giờ, thời gian người thứ hai làm xong công việc là 6 giờ.
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay