Câu hỏi:

13/07/2024 6,122

Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho \[CF = BD\]. Gọi M là giao điểm của DF và BC.

Chứng minh rằng \[\frac{{MD}}{{MF}} = \frac{{AC}}{{AB}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. (ảnh 1)

\[DE\parallel CM\] nên theo định lí Ta-lét ta có: \[\frac{{MD}}{{MF}} = \frac{{CE}}{{CF}}\].

\[CF = BD\] nên \[\frac{{MD}}{{MF}} = \frac{{CE}}{{BD}}\] (1).

Lại có, do \[DE\parallel BC\] nên theo định lí Ta-lét ta có:

\[\frac{{AB}}{{BD}} = \frac{{AC}}{{CE}} \Rightarrow \frac{{CE}}{{BD}} = \frac{{AC}}{{AB}}\] (2) .

Từ (1) và (2) ta suy ra \[\frac{{MD}}{{MF}} = \frac{{AC}}{{AB}}\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để chứng minh \(\frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AC}}{{AI}}\), ta sẽ tìm từng tỉ số \(\frac{{AB}}{{AE}},\frac{{AD}}{{{\rm{AF}}}}\).

Đường thẳng d cắt các cạnh AB, AD và đường chéo AC của hình bình hành  (ảnh 1)

Kẻ \(BG\parallel {\rm{EF(G}} \in {\rm{AC),}}\,\,{\rm{DH}}\parallel {\rm{EF(H}} \in {\rm{AC)}}\).

Gọi O là giao điểm của BD và AC.

Khi đó, theo định lí Ta-lét ta có:

\(\frac{{AB}}{{AE}} = \frac{{AG}}{{AI}};\frac{{AD}}{{{\rm{AF}}}} = \frac{{AH}}{{AI}}\).

\( \Rightarrow \frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AG}}{{AI}} + \frac{{AH}}{{AI}} = \frac{{AG + AH}}{{AI}} = \frac{{2AG + GH}}{{AI}}\)

Do \(BG,\,\,DH\parallel E{\rm{F}}\) nên \({\rm{BG}}\parallel {\rm{DH}} \Rightarrow \widehat {GBO} = \widehat {HDO}\). Từ đó \(\Delta BGO = \Delta DHO\) (g.c.g).

Suy ra \(GO = OH \Rightarrow 2AG + GH = 2AG + 2GO = 2AO = AC\)

Do đó, \(\frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AC}}{{AI}}\) (đpcm).

Lời giải

Do \[NK\parallel CM\] nên

Cho tam giác ABC lấy M, N thuộc hai cạnh AB, AC. Nối B với N, C với M. Qua M  (ảnh 1)

\[\frac{{AK}}{{AM}} = \frac{{AN}}{{AC}} \Rightarrow AM.AN = AK.AC.\] (1).

Do \[MI\parallel BN\] nên

\[\frac{{AM}}{{AB}} = \frac{{AI}}{{AN}} \Rightarrow AM.AN = AB.AI\] (2).

Từ (1) và (2), suy ra \[AK.AC = AB.AI \Rightarrow \frac{{AK}}{{AB}} = \frac{{AI}}{{AC}}\].

Do đó, theo định lí Ta-lét đảo \[IK\parallel BC\] (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay