Câu hỏi:
13/07/2024 6,280
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho \[CF = BD\]. Gọi M là giao điểm của DF và BC.
Chứng minh rằng \[\frac{{MD}}{{MF}} = \frac{{AC}}{{AB}}\].
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho \[CF = BD\]. Gọi M là giao điểm của DF và BC.
Chứng minh rằng \[\frac{{MD}}{{MF}} = \frac{{AC}}{{AB}}\].
Quảng cáo
Trả lời:

\[DE\parallel CM\] nên theo định lí Ta-lét ta có: \[\frac{{MD}}{{MF}} = \frac{{CE}}{{CF}}\].
Mà \[CF = BD\] nên \[\frac{{MD}}{{MF}} = \frac{{CE}}{{BD}}\] (1).
Lại có, do \[DE\parallel BC\] nên theo định lí Ta-lét ta có:
\[\frac{{AB}}{{BD}} = \frac{{AC}}{{CE}} \Rightarrow \frac{{CE}}{{BD}} = \frac{{AC}}{{AB}}\] (2) .
Từ (1) và (2) ta suy ra \[\frac{{MD}}{{MF}} = \frac{{AC}}{{AB}}\].
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Để chứng minh \(\frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AC}}{{AI}}\), ta sẽ tìm từng tỉ số \(\frac{{AB}}{{AE}},\frac{{AD}}{{{\rm{AF}}}}\).

Kẻ \(BG\parallel {\rm{EF(G}} \in {\rm{AC),}}\,\,{\rm{DH}}\parallel {\rm{EF(H}} \in {\rm{AC)}}\).
Gọi O là giao điểm của BD và AC.
Khi đó, theo định lí Ta-lét ta có:
\(\frac{{AB}}{{AE}} = \frac{{AG}}{{AI}};\frac{{AD}}{{{\rm{AF}}}} = \frac{{AH}}{{AI}}\).
\( \Rightarrow \frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AG}}{{AI}} + \frac{{AH}}{{AI}} = \frac{{AG + AH}}{{AI}} = \frac{{2AG + GH}}{{AI}}\)
Do \(BG,\,\,DH\parallel E{\rm{F}}\) nên \({\rm{BG}}\parallel {\rm{DH}} \Rightarrow \widehat {GBO} = \widehat {HDO}\). Từ đó \(\Delta BGO = \Delta DHO\) (g.c.g).
Suy ra \(GO = OH \Rightarrow 2AG + GH = 2AG + 2GO = 2AO = AC\)
Do đó, \(\frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AC}}{{AI}}\) (đpcm).
Lời giải
Do \[NK\parallel CM\] nên

\[\frac{{AK}}{{AM}} = \frac{{AN}}{{AC}} \Rightarrow AM.AN = AK.AC.\] (1).
Do \[MI\parallel BN\] nên
\[\frac{{AM}}{{AB}} = \frac{{AI}}{{AN}} \Rightarrow AM.AN = AB.AI\] (2).
Từ (1) và (2), suy ra \[AK.AC = AB.AI \Rightarrow \frac{{AK}}{{AB}} = \frac{{AI}}{{AC}}\].
Do đó, theo định lí Ta-lét đảo \[IK\parallel BC\] (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.