Chủ đề 1: Định lí Ta-lét có đáp án
45 người thi tuần này 4.6 1.6 K lượt thi 18 câu hỏi 30 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Theo giả thiết, \(\frac{{MA}}{{MB}} = \frac{7}{4} \Rightarrow \frac{{MA}}{7} = \frac{{MB}}{4} = \frac{{MA + MB}}{{7 + 4}} = \frac{{AB}}{{11}} = \frac{{15}}{{11}}\)
\( \Rightarrow MA \approx 9,55cm;\,\,MB \approx 5,45cm\)
Lời giải
Do \(DE\parallel BC\) nên theo định lí Ta-lét ta có: \(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}} \Rightarrow \frac{2}{x} = \frac{3}{7} \Rightarrow x = \frac{{14}}{3}\).
Lời giải
Do \(DE \bot AB,\,\,BC \bot AB\) nên \(DE\parallel BC\).
Từ đó, theo định lí Ta-lét ta có: \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} \Rightarrow \frac{3}{y} = \frac{4}{{4 + 2,5}} \Rightarrow y = 4,875\).
Ví dụ 3: Cho tam giác ABC có \(BC = 15cm\). Trên đường cao AH lấy các điểm I, K sao cho \(AK = KI = IH\). Qua I và K vẽ các đường thẳng EF, MN song song với BC (\(E,M \in AB;F,N \in AC\)). Tính độ dài các đoạn thẳng MN và EF.
Lời giải

\(MK\parallel BH\) nên theo định lí Ta-lét ta có:
\(\frac{{AM}}{{AB}} = \frac{{AK}}{{AH}} = \frac{1}{3}\).
Lại có \(MN\parallel BC\) nên theo định lí Ta-lét ta có:
\(\frac{{MN}}{{BC}} = \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow MN = 5cm\).
\(EI\parallel BH\) nên theo định lí Ta-lét ta có:
\(\frac{{AE}}{{AB}} = \frac{{AI}}{{AH}} = \frac{2}{3}\).
\({\rm{EF}}\parallel BC\) nên theo định lí Ta-lét ta có: \(\frac{{{\rm{EF}}}}{{BC}} = \frac{{AE}}{{AB}} = \frac{2}{3} \Rightarrow {\rm{EF}} = 10cm\).
Lời giải

Để chứng minh đẳng thức \(\frac{{AE}}{{AB}} + \frac{{{\rm{AF}}}}{{AC}} = 1\), ta sẽ tìm từng tỉ số
\(\frac{{AE}}{{AB}},\frac{{{\rm{AF}}}}{{AC}}\).
Do \(DE\parallel AC\) nên theo định lí Ta-lét ta có: \(\frac{{AE}}{{AB}} = \frac{{DC}}{{BC}}\) (1).
Do \(DF\parallel AB\) nên theo định lí Ta-lét ta có:
\(\frac{{{\rm{AF}}}}{{AC}} = \frac{{BD}}{{BC}}\) (2)
Cộng vế với vế của (1) và (2) ta được:
\(\frac{{AE}}{{AB}} + \frac{{{\rm{AF}}}}{{AC}} = \frac{{DC}}{{BC}} + \frac{{BD}}{{BC}} = 1\) (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
325 Đánh giá
50%
40%
0%
0%
0%