Câu hỏi:
12/07/2024 1,404
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy cắt cạnh bên AD ở I, cắt đường chéo BD tại K, AC tại L và cắt cạnh bên BC tại G. Đường thẳng đi qua giao điểm O của hai đường chéo và song song với hai đáy cắt hai cạnh bên ở E và F. Chứng minh OE = OF.
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy cắt cạnh bên AD ở I, cắt đường chéo BD tại K, AC tại L và cắt cạnh bên BC tại G. Đường thẳng đi qua giao điểm O của hai đường chéo và song song với hai đáy cắt hai cạnh bên ở E và F. Chứng minh OE = OF.
Quảng cáo
Trả lời:
Ta có: \[OE\parallel AB \Rightarrow \frac{{OE}}{{AB}} = \frac{{OD}}{{DB}};\,\,OF\parallel AB \Rightarrow \frac{{OF}}{{AB}} = \frac{{OC}}{{AC}}\].
Lại có: \[AB\parallel CD \Rightarrow \frac{{OD}}{{BD}} = \frac{{OC}}{{AC}}\].
Do vậy \[\frac{{OE}}{{AB}} = \frac{{OF}}{{AB}} \Rightarrow OE = OF\].
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

\[DE\parallel CM\] nên theo định lí Ta-lét ta có: \[\frac{{MD}}{{MF}} = \frac{{CE}}{{CF}}\].
Mà \[CF = BD\] nên \[\frac{{MD}}{{MF}} = \frac{{CE}}{{BD}}\] (1).
Lại có, do \[DE\parallel BC\] nên theo định lí Ta-lét ta có:
\[\frac{{AB}}{{BD}} = \frac{{AC}}{{CE}} \Rightarrow \frac{{CE}}{{BD}} = \frac{{AC}}{{AB}}\] (2) .
Từ (1) và (2) ta suy ra \[\frac{{MD}}{{MF}} = \frac{{AC}}{{AB}}\].
Lời giải
Để chứng minh \(\frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AC}}{{AI}}\), ta sẽ tìm từng tỉ số \(\frac{{AB}}{{AE}},\frac{{AD}}{{{\rm{AF}}}}\).

Kẻ \(BG\parallel {\rm{EF(G}} \in {\rm{AC),}}\,\,{\rm{DH}}\parallel {\rm{EF(H}} \in {\rm{AC)}}\).
Gọi O là giao điểm của BD và AC.
Khi đó, theo định lí Ta-lét ta có:
\(\frac{{AB}}{{AE}} = \frac{{AG}}{{AI}};\frac{{AD}}{{{\rm{AF}}}} = \frac{{AH}}{{AI}}\).
\( \Rightarrow \frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AG}}{{AI}} + \frac{{AH}}{{AI}} = \frac{{AG + AH}}{{AI}} = \frac{{2AG + GH}}{{AI}}\)
Do \(BG,\,\,DH\parallel E{\rm{F}}\) nên \({\rm{BG}}\parallel {\rm{DH}} \Rightarrow \widehat {GBO} = \widehat {HDO}\). Từ đó \(\Delta BGO = \Delta DHO\) (g.c.g).
Suy ra \(GO = OH \Rightarrow 2AG + GH = 2AG + 2GO = 2AO = AC\)
Do đó, \(\frac{{AB}}{{AE}} + \frac{{AD}}{{{\rm{AF}}}} = \frac{{AC}}{{AI}}\) (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.