Cho đường tròn (O), P là một điểm cố định nằm trong (O) nhưng không trùng với tâm O. Một đường thẳng d thay đổi qua P cắt (O) tại A và B. Tìm quỹ tích trung điểm M của đoạn AB khi d quay quanh P.
Quảng cáo
Trả lời:
Phần thuận: (Hình 1)
Nối OM. Vì M là trung điểm của AB nên , tức là M luôn nhìn đoạn OP dưới một góc vuông. Vậy M luôn thuộc đường tròn đường kính OP.

Giới hạn: Theo chứng minh trên thì mọi điểm M thuộc quỹ tích đều thuộc đường tròn đường kính OP.
Vị trí M trùng O tương ứng với trường hợp d đi qua O.
Như vậy, quỹ tích là cả đường tròn đường kính OP.
Phần đảo: (Hình 2)
Lấy một điểm M' bất kì thuộc đường tròn đường kính OP (M' khác O). Nối OM'. Qua M' kẻ đường thẳng d' vuông góc với OM' cắt (O) tại A' và B'. Do góc nên d' đi qua P.
Vì tam giác OA'B' cân tại O và OM' vuông góc với A'B' nên M' là trung điểm của A'B'.
Vậy M' là một điểm thuộc quỹ tích.
Kết luận: Quỹ tích là đường tròn đường kính OP.
Chú ý: Nếu P là một điểm nằm ngoài đường tròn thì quỹ tích sẽ chỉ là phần đường tròn đường kính OP nằm bên trong (O). Như vậy, phần đảo và phần giới hạn có ý nghĩa nói chung không thể bỏ qua.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đặt . Ta có:
(tổng ba góc trong một tam giác).
.
Vì I là tâm đường tròn nội tiếp tam giác ABC nên AI, BI lần lượt là tia phân giác của hai góc A và B. Suy ra
Lại có: (tổng ba góc trong một tam giác).
không đổi.
Vì AB cố định, I thuộc nửa mặt phẳng chứa cung lớn AB có bờ là đường thẳng AB nên I luôn chuyển động trên cung chứa góc dựng trên đoạn AB.
Lời giải

Ta có: (hai góc kề bù).
Do AB cố định nên quỹ tích điểm I là cung chứa góc dựng trên đoạn AB.
Phần đảo: Trên cung chứa góc dựng trên đoạn AB, lấy điểm I'. AI' và BI' lần lượt cắt nửa đường tròn (O) tại N' và M'. Khi đó .
Suy ra tam giác M'O'N' đều. Do đó M'N' = R.
Vậy I' là một điểm thuộc quỹ tích.
Kết luận: Quỹ tích các điểm I là cung chứa góc dựng trên đoạn AB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.