Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích của điểm M khi E di động trên cạnh BC.
Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích của điểm M khi E di động trên cạnh BC.
Quảng cáo
Trả lời:

Giới hạn: E trùng với C thì M cũng trùng với C, E trùng với B thì M cũng trùng với B. Suy ra M thuộc cung nhỏ BC.
Phần đảo: Lấy điểm M thuộc quỹ tích và chứng minh CE = CF.
Kết luận: Quỹ tích của điểm M là cung nhỏ BC của đường tròn đường kính BD.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đặt . Ta có:
(tổng ba góc trong một tam giác).
.
Vì I là tâm đường tròn nội tiếp tam giác ABC nên AI, BI lần lượt là tia phân giác của hai góc A và B. Suy ra
Lại có: (tổng ba góc trong một tam giác).
không đổi.
Vì AB cố định, I thuộc nửa mặt phẳng chứa cung lớn AB có bờ là đường thẳng AB nên I luôn chuyển động trên cung chứa góc dựng trên đoạn AB.
Lời giải

Ta có: (hai góc kề bù).
Do AB cố định nên quỹ tích điểm I là cung chứa góc dựng trên đoạn AB.
Phần đảo: Trên cung chứa góc dựng trên đoạn AB, lấy điểm I'. AI' và BI' lần lượt cắt nửa đường tròn (O) tại N' và M'. Khi đó .
Suy ra tam giác M'O'N' đều. Do đó M'N' = R.
Vậy I' là một điểm thuộc quỹ tích.
Kết luận: Quỹ tích các điểm I là cung chứa góc dựng trên đoạn AB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.