Câu hỏi:
13/07/2024 719Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích của điểm M khi E di động trên cạnh BC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giới hạn: E trùng với C thì M cũng trùng với C, E trùng với B thì M cũng trùng với B. Suy ra M thuộc cung nhỏ BC.
Phần đảo: Lấy điểm M thuộc quỹ tích và chứng minh CE = CF.
Kết luận: Quỹ tích của điểm M là cung nhỏ BC của đường tròn đường kính BD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho nửa đường tròn đường kính AB và một dây AC quay quanh A. Trên nửa mặt phẳng bờ AC không chứa B ta vẽ hình vuông ACDE. Hỏi:
a) Điểm D di động trên đường nào?
Câu 3:
Cho một đường tròn (O) và dây AB cố định, điểm C chuyển động trên cung lớn AB (C khác A và B). Chứng minh rằng tâm I của đường tròn nội tiếp tam giác ABC chuyển động trên một cung tròn cố định.
Câu 4:
Câu 5:
Cho nửa đường tròn đường kính AB cố định. C là một điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB.
a) Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho.
về câu hỏi!