Câu hỏi:

13/07/2024 1,727

b) Tìm a để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn 2yx2+3 là số nguyên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Với a=0thì hệ x=0y=2, hệ có nghiệm.

Với a0. Hệ có nghiệm duy nhất 1aa1a21a21 (luôn đúng).

Hệ phương trình luôn có nghiệm với mọi a.

x+ay=3aax+y=2a2x=3aaya3aay+y=2a2x=3aaya2+1y=2a2+2y=2x=a.

(Vì a2+1>0 nên rút gọn được ta có y=2).

Hệ phương trình luôn có nghiệm duy nhất x;y=a;2.

Xét: A=2yx2+3=4a2+3

Ta có: a2+33, a4a2+343, a0<A43.

Mà theo đề bài để A thì A=1a2+3=4a2=1a=1a=1.

Vậy a=1  hoặc a= -1 thỏa mãn đề bài.

Lưu ý: Đối với bài toán tìm a để biểu thức A nhận giá trị nguyên thì ta đi tìm khoảng giá trị của biểu thức A, tìm các giá trị nguyên của A trong khoảng này rồi thay vào tìm a. Phân biệt với bài toán tìm a là số nguyên để A nhận giá trị nguyên thì khi đó mới có Ư (4).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải chi tiết

Với m=0, ta có hệ: y=3x=0. Hệ có nghiệm duy nhất.

Với m0, hệ phương trình có nghiệm duy nhất m11mm21m±1.

Vậy với m±1thì hệ phương trình có nghiệm duy nhất.

mxy=3mxmy=2my=mx+m3xmmx+m3=2my=mx+m31m2x=m2mx=mm+1y=m2m+1+m3

x=mm+1y=2m3m+1x=1+1m+1y=21m+1.

Cộng hai vế của hai phương trình ta khử được tham số m. Hệ thức cần tìm là x+y=3.

Lời giải

b) Vì 3112 nên hệ phương trình luôn có nghiệm duy nhất x;y.

3xy=2m+3x+2y=3m+16x2y=4m+6x+2y=3m+17x=7m+73xy=2m+3x=m+1y=3m+12m3=m

Hệ phương trình có nghiệm x;y=m+1;m.

Theo đề bài, ta có: x2+y2=5

m+12+m2=52m2+2m4=02m1m+2=0m=1m=2.

Vậy m= 1 hoặc m = -2 thì phương trình có nghiệm thỏa mãn đề bài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay