Câu hỏi:

11/07/2024 3,797

c) Gọi I là trung điểm của EF. Chứng minh IC là tiếp tuyến của (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi H là giao điểm của EF và AB. Vì E là trực tâm của ABF nên FH AB.

OCA cân tại O nên OCA = OAC (hai góc ở đáy).

Ta có CI là đường trung tuyến của tam giác vuông CEF nên CIB = CF. Do đó ICF cân tại I nên ICF = IFC (hai góc ở đáy).

=> ICF + OCA = IFC + OAC = 90° (vì HAF vuông tại H).

=> ICO = 90° => IC OC. Vậy IC là tiếp tuyến của đường tròn (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: MEN = 360° - ( MEH + NEH )

                     = 360° - ( 180° - ABC + 180° - ACB)

                     = ABC + ACB = 180° - BAC

Suy ra MEN + MAN = 180° hay tứ giác AMEN là tứ giác nội tiếp.

Kẻ MK BC, giả sử HE cắt MN tại I thì IH là cát tuyến của hai đường tròn (BMH), (CNH).

Lại có MB = MH = MA (tính chất trung tuyến tam giác vuông). Suy ra tam giác MBH cân tại M.

=> KB = KH => MK luôn đi qua tâm đường tròn ngoại tiếp tam giác MBH.

Hay MN là tiếp tuyến của (MBH) suy ra IM2= IE.IH                (1)

Tương tự ta cũng có MN là tiếp tuyến của (HNC) suy ra IN2= IE.IH.                    (2)

Từ (1) và (2) suy ra IM = IN.

Vậy HE đi qua trung điểm của MN.

Lời giải

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC ( E khác B và C ), AE cắt CD tại F. Chứng minh BEFI là tứ giác nội tiếp đường tròn. (ảnh 1)

Tứ giác BEFI  có:

            BIF = 900 (giả thiết);

             BEF = BEA = 900(góc nội tiếp chắn nửa đường tròn).

Suy ra tứ giác BEFI  nội tiếp đường tròn đường kính BF.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP