Câu hỏi:

11/07/2024 1,430

d) Hỏi khi C thay đổi thỏa mãn điều kiện bài toán, E thuộc đường tròn cố định nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
d) Hỏi khi C thay đổi thỏa mãn điều kiện bài toán, E thuộc đường tròn cố định nào? (ảnh 1)

Gọi T là điểm chính giữa của cung AB không chứa điểm C (T cố định).

Khi đó OT AB  nên OT // IE.

Chứng minh tương tự câu c, ta có được ID là tiếp tuyến của đường tròn (O).

Do đó tứ giác ICOD là hình chữ nhật. Lại có OC = OD nên tứ giác này là hình vuông cạnh R.

Tam giác ECF vuông tại C có CI là trung tuyến nên IE = CI = R.

Ta có: OT // IE và OT = IE = R nên IETO là hình bình hành.

Do vậy TE = OI = R2.

Vậy E thuộc đường tròn tâm T bán kính R2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: MEN = 360° - ( MEH + NEH )

                     = 360° - ( 180° - ABC + 180° - ACB)

                     = ABC + ACB = 180° - BAC

Suy ra MEN + MAN = 180° hay tứ giác AMEN là tứ giác nội tiếp.

Kẻ MK BC, giả sử HE cắt MN tại I thì IH là cát tuyến của hai đường tròn (BMH), (CNH).

Lại có MB = MH = MA (tính chất trung tuyến tam giác vuông). Suy ra tam giác MBH cân tại M.

=> KB = KH => MK luôn đi qua tâm đường tròn ngoại tiếp tam giác MBH.

Hay MN là tiếp tuyến của (MBH) suy ra IM2= IE.IH                (1)

Tương tự ta cũng có MN là tiếp tuyến của (HNC) suy ra IN2= IE.IH.                    (2)

Từ (1) và (2) suy ra IM = IN.

Vậy HE đi qua trung điểm của MN.

Lời giải

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC ( E khác B và C ), AE cắt CD tại F. Chứng minh BEFI là tứ giác nội tiếp đường tròn. (ảnh 1)

Tứ giác BEFI  có:

            BIF = 900 (giả thiết);

             BEF = BEA = 900(góc nội tiếp chắn nửa đường tròn).

Suy ra tứ giác BEFI  nội tiếp đường tròn đường kính BF.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Chứng minh FC.FA = FB.FD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay