Câu hỏi:

11/07/2024 826

Trên các cạnh BC, BD của hình vuông ABCD ta lấy lần lượt các điểm M, N  sao cho MAN = 45°. Đường thẳng BD cắt các đường thẳng AM, AN tương ứng tại các điểm P, Q.

a) Chứng minh rằng các tứ giác ABMQ và ADNP nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
a) Chứng minh rằng các tứ giác ABMQ và ADNP nội tiếp. (ảnh 1)

Các đỉnh A và B cùng nhìn đoạn thẳng MQ dưới một góc 45°.

Vì vậy tứ giác ABMQ nội tiếp.

Tương tự ta suy ra tứ giác ADNP nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do ABMQ là tứ giác nội tiếp nên AQM + ABM = 180° => AQM = 90°.

Tương tự tứ giác ADNP nội tiếp suy ra APN = 90°.

Tứ giác MNPQ là tứ giác nội tiếp vì có hai đỉnh Q và P cùng nhìn cạnh MN dưới một góc 90°.

Suy ra bốn điểm M , Q , P cùng thuộc một đường tròn.                 (1)

Tứ giác MCNP là tứ giác nội tiếp vì MCN + MPN = 90° + 90° = 180°.

Suy ra bốn điểm M , C , N , P cùng thuộc một đường tròn.                 (2)

Từ (1) và (2) suy ra các điểm M , N , P , Q , C cùng nằm trên một đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP