Câu hỏi:
12/07/2024 483
Cho tam giác ABC nội tiếp trong đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh rằng:
a) Tam giác AMN là tam giác cân.
Cho tam giác ABC nội tiếp trong đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh rằng:
a) Tam giác AMN là tam giác cân.
Quảng cáo
Trả lời:
a) Theo giả thiết BD là tia phân giác của góc nên D là điểm chính giữa của cung . (1)
Tương tự ta cũng có E là điểm chính giữa của cung
. (2)
Góc và là hai góc có đỉnh nằm trong đường tròn (O) nên:
và . (3)
Từ (1), (2) và (3) suy ra cân tại A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Tứ giác DECB là hình thang cân
là hình thang và
cân tại A.
Vậy tam giác ABC phải là tam giác cân tại A thì tứ giác DECB là hình thang cân.
Lời giải
a) Gọi N là giao điểm thứ hai của AB với đường tròn (T).
Do AD là phân giác của .
Ta có .
(đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.