Câu hỏi:
12/07/2024 333Cho tam giác ABC nội tiếp trong đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh rằng:
a) Tam giác AMN là tam giác cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Theo giả thiết BD là tia phân giác của góc nên D là điểm chính giữa của cung . (1)
Tương tự ta cũng có E là điểm chính giữa của cung
. (2)
Góc và là hai góc có đỉnh nằm trong đường tròn (O) nên:
và . (3)
Từ (1), (2) và (3) suy ra cân tại A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
b) Tam giác ABC phải có thêm điều kiện gì thì tứ giác DECB là hình thang cân.
Câu 2:
Trong tam giác ABC, đường phân giác của cắt cạnh BC tại D. Giả sử (T) là đường tròn tiếp xúc với BC tại và đi qua điểm D. Gọi M là giao điểm thứ hai của (T) và AC, P là giao điểm thứ hai của (T) và BM, E là giao điểm của AP và BC.
a) Chứng minh rằng .
Câu 3:
Cho bốn điểm A,D,C,B theo thứ tự đó nằm trên đường tròn tâm O đường kính AB=2R. Gọi E và F theo thứ tự là hình chiếu vuông góc của A,B trên đường thẳng CDA. Tia AD cắt tia BC tại I. Biết .
a) Tính số đo .
Câu 4:
b) Trên cung nhỏ CD lấy điểm K. Gọi giao điểm của KA,KB với DC lần lượt là M và N. Tìm giá trị lớn nhất của MN khi K di động trên cung nhỏ CD.
về câu hỏi!