Câu hỏi:

12/07/2024 424

Cho tam giác ABC nội tiếp trong đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh rằng:

a) Tam giác AMN là tam giác cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Theo giả thiết BD là tia phân giác của góc  ABC^ nên D là điểm chính giữa của cung  ACDA=DC.                              (1)

Tương tự ta cũng có E là điểm chính giữa của cung  AB

 EA=EB.                                                   (2)

Góc  AMN^ và  ANM^ là hai góc có đỉnh nằm trong đường tròn (O) nên:

 sđAMN^=12sđAD+sđEB và  sđANM^=12sđDC+sđEA. (3)

Từ (1), (2) và (3) suy ra  AMN^=ANM^ΔAMN cân tại A.

Media VietJack

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b) Tam giác ABC phải có thêm điều kiện gì thì tứ giác DECB là hình thang cân.

Xem đáp án » 12/07/2024 1,688

Câu 2:

Trong tam giác ABC, đường phân giác của  BAC^ cắt cạnh BC tại D. Giả sử (T) là đường tròn tiếp xúc với BC tại  và đi qua điểm D. Gọi M là giao điểm thứ hai của (T) và AC, P là giao điểm thứ hai của (T) và BM, E là giao điểm của AP và BC.

a) Chứng minh rằng  EAB^=MBC^.

Xem đáp án » 12/07/2024 1,350

Câu 3:

Cho bốn điểm A,D,C,B theo thứ tự đó nằm trên đường tròn tâm O đường kính AB=2R. Gọi E và F theo thứ tự là hình chiếu vuông góc của A,B trên đường thẳng CDA. Tia AD cắt tia BC tại I. Biết  AE+BF=R3.

a) Tính số đo  AIB^.

Xem đáp án » 12/07/2024 504

Câu 4:

b) Trên cung nhỏ CD lấy điểm K. Gọi giao điểm của KA,KB với DC lần lượt là M và N. Tìm giá trị lớn nhất của MN khi K di động trên cung nhỏ CD.

Xem đáp án » 12/07/2024 462

Câu 5:

b) Chứng minh hệ thức  BE2=EP.EA.

 

Xem đáp án » 31/08/2022 437

Câu 6:

c) Tứ giác AMIN là hình thoi.

Xem đáp án » 31/08/2022 431
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua